Lie group methods for optimization with orthogonality constraints

被引:24
|
作者
Plumbley, MD [1 ]
机构
[1] Univ London, Dept Elect Engn, Mile End Rd, London E1 4NS, England
关键词
D O I
10.1007/978-3-540-30110-3_157
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Optimization of a cost function J(W) under an orthogonality constraint WWT = I is a common requirement for ICA methods. In this paper, we will review the use of Lie group methods to perform this constrained optimization. Instead of searching in the space of n x n matrices W, we will introduce the concept of the Lie group SO(n) of orthogonal matrices, and the corresponding Lie algebra so(n). Using so(n) for our coordinates, we can multiplicatively update W by a rotation matrix R so that W' = RW always remains orthogonal. Steepest descent and conjugate gradient algorithms can be used in this framework.
引用
收藏
页码:1245 / 1252
页数:8
相关论文
共 50 条
  • [1] Projected nonmonotone search methods for optimization with orthogonality constraints
    Oscar Susano Dalmau Cedeño
    Harry Fernando Oviedo Leon
    Computational and Applied Mathematics, 2018, 37 : 3118 - 3144
  • [2] Projected nonmonotone search methods for optimization with orthogonality constraints
    Dalmau Cedeno, Oscar Susano
    Oviedo Leon, Harry Fernando
    COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (03): : 3118 - 3144
  • [3] STRUCTURED QUASI-NEWTON METHODS FOR OPTIMIZATION WITH ORTHOGONALITY CONSTRAINTS
    Hu, Jiang
    Jiang, Bo
    Lin, Lin
    Wen, Zaiwen
    Yuan, Ya-Xiang
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (04): : A2239 - A2269
  • [4] ACCELERATED OPTIMIZATION WITH ORTHOGONALITY CONSTRAINTS
    Siegel, Jonathan W.
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2021, 39 (02): : 207 - 226
  • [5] Optimization of Lie group methods for differential equations
    Blanes, S
    Casas, F
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2003, 19 (03): : 331 - 339
  • [6] A feasible method for optimization with orthogonality constraints
    Zaiwen Wen
    Wotao Yin
    Mathematical Programming, 2013, 142 : 397 - 434
  • [7] A feasible method for optimization with orthogonality constraints
    Wen, Zaiwen
    Yin, Wotao
    MATHEMATICAL PROGRAMMING, 2013, 142 (1-2) : 397 - 434
  • [8] A class of smooth exact penalty function methods for optimization problems with orthogonality constraints
    Xiao, Nachuan
    Liu, Xin
    Yuan, Ya-xiang
    OPTIMIZATION METHODS & SOFTWARE, 2022, 37 (04): : 1205 - 1241
  • [9] The Lie group Euler methods of multibody system dynamics with holonomic constraints
    Ding, Jieyu
    Pan, Zhenkuan
    ADVANCES IN MECHANICAL ENGINEERING, 2018, 10 (04)
  • [10] PARALLELIZABLE ALGORITHMS FOR OPTIMIZATION PROBLEMS WITH ORTHOGONALITY CONSTRAINTS
    Gao, Bin
    Liu, Xin
    Yuan, Ya-Xiang
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (03): : A1949 - A1983