Lithium-salt monohydrate melt: A stable electrolyte for aqueous lithium-ion batteries

被引:148
作者
Ko, Seongjae [1 ]
Yamada, Yuki [1 ,2 ]
Miyazaki, Kasumi [1 ]
Shimada, Tatau [1 ]
Watanabe, Eriko [1 ]
Tateyama, Yoshitaka [2 ,3 ,4 ]
Kamiya, Takeshi [5 ]
Honda, Tsunetoshi [6 ]
Akikusa, Jun [7 ]
Yamada, Atsuo [1 ,2 ]
机构
[1] Univ Tokyo, Dept Chem Syst Engn, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1138656, Japan
[2] Kyoto Univ, ESICB, Nishikyo Ku, 1-30 Goryo Ohara, Kyoto 6158245, Japan
[3] Natl Inst Mat Sci, Ctr Green Res Energy & Environm Mat GREEN, 1-1 Namiki, Tsukuba, Ibaraki 3050044, Japan
[4] Natl Inst Mat Sci, Int Ctr Mat Nanoarchitecton MANA, 1-1 Namiki, Tsukuba, Ibaraki 3050044, Japan
[5] Mitsubishi Mat Elect Chem Co Ltd, 3-1-6 Barajima, Akita, Akita 0108585, Japan
[6] Mitsubishi Mat Corp, Adv Prod Co, Sumida Ku, 1-6-1 Yokoami, Tokyo 1300015, Japan
[7] Mitsubishi Mat Corp, Cent Res Inst, 1002-14 Mukohyama, Naka, Ibaraki 3110102, Japan
关键词
Aqueous batteries; Electrolytes; Hydrate melts; Potential window; WATER; LI; STABILITY; MECHANISM; VISCOSITY; GREEN;
D O I
10.1016/j.elecom.2019.106488
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Concentrated aqueous electrolytes are promising for high-voltage and safe aqueous lithium-ion batteries because of their wide potential window. For Li system, a room-temperature dihydrate melt (27.8 mol kg(-1)) has been demonstrated to function as a stable aqueous electrolyte, but more concentrated electrolytes have yet to be discovered due to the limited solubility of Li salts. Here we report a room-temperature monohydrate melt of Li salts (55.5 mol kg(-1)) as an ultimate system of concentrated aqueous electrolytes. It has been discovered by adopting a Li salt with an asymmetric imide anion that shows ultra-high solubility in water. The monohydrate-melt electrolyte provides a wide potential window of similar to 5 V based on its dramatically improved passivation ability, which, for the first time, enables the Li-alloying reaction of Al in aqueous electrolytes.
引用
收藏
页数:5
相关论文
共 35 条
[1]   IR and Raman spectra of liquid water: Theory and interpretation [J].
Auer, B. M. ;
Skinner, J. L. .
JOURNAL OF CHEMICAL PHYSICS, 2008, 128 (22)
[2]   A Critical Review of Thermal Issues in Lithium-Ion Batteries [J].
Bandhauer, Todd M. ;
Garimella, Srinivas ;
Fuller, Thomas F. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (03) :R1-R25
[3]   THE FORMATION OF LITHIUM-ALUMINUM ALLOYS AT AN ALUMINUM ELECTRODE IN PROPYLENE CARBONATE [J].
BARANSKI, AS ;
FAWCETT, WR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1982, 129 (05) :901-907
[4]   Activity of water in aqueous systems; A frequently neglected property [J].
Blandamer, MJ ;
Engberts, JBFN ;
Gleeson, PT ;
Reis, JCR .
CHEMICAL SOCIETY REVIEWS, 2005, 34 (05) :440-458
[5]   Promise and reality of post-lithium-ion batteries with high energy densities [J].
Choi, Jang Wook ;
Aurbach, Doron .
NATURE REVIEWS MATERIALS, 2016, 1 (04)
[6]   Aqueous Solubility of Organic Salts. Investigating Trends in a Systematic Series of 51 Crystalline Salt Forms of Methylephedrine [J].
de Moraes, Lygia S. ;
Edwards, Darren ;
Florence, Alastair J. ;
Johnston, Andrea ;
Johnston, Blair F. ;
Morrison, Catriona K. ;
Kennedy, Alan R. .
CRYSTAL GROWTH & DESIGN, 2017, 17 (06) :3277-3286
[7]  
Doughty Dan, 2012, Electrochemical Society Interface, V21, P29
[8]   Nanostructural Reorganization Manifests in Sui-Generis Density Trend of lmidazolium Acetate/Water Binary Mixtures [J].
Ghoshdastidar, Debostuti ;
Senapati, Sanjib .
JOURNAL OF PHYSICAL CHEMISTRY B, 2015, 119 (34) :10911-10920
[9]   Fluorine-Free Water-in-Salt Electrolyte for Green and Low-Cost Aqueous Sodium-Ion Batteries [J].
Han, Jin ;
Zhang, Huang ;
Varzi, Alberto ;
Passerini, Stefano .
CHEMSUSCHEM, 2018, 11 (21) :3704-3707
[10]   Aqueous Rechargeable Li and Na Ion Batteries [J].
Kim, Haegyeom ;
Hong, Jihyun ;
Park, Kyu-Young ;
Kim, Hyungsub ;
Kim, Sung-Wook ;
Kang, Kisuk .
CHEMICAL REVIEWS, 2014, 114 (23) :11788-11827