Phloem transport and drought

被引:211
作者
Sevanto, Sanna [1 ]
机构
[1] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA
关键词
Carbohydrate transport; carbon starvation; hydraulic failure; Mnch flow; semi-permeable conduit; tree mortality; INDUCED TREE MORTALITY; PRESSURE-FLOW HYPOTHESIS; LONG-DISTANCE TRANSPORT; STOMATAL CLOSURE; CARBON LIMITATION; WATER RELATIONS; SINK REGULATION; XYLEM EMBOLISM; MECHANISMS; MUNCH;
D O I
10.1093/jxb/ert467
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Close hydraulic connection between the xylem and the phloem challenges phloem transport during drought. Current theories suggest that the cause of phloem transport failure during drought depends on the hydraulic permeability of phloem conduit walls.Drought challenges plant water uptake and the vascular system. In the xylem it causes embolism that impairs water transport from the soil to the leaves and, if uncontrolled, may even lead to plant mortality via hydraulic failure. What happens in the phloem, however, is less clear because measuring phloem transport is still a significant challenge to plant science. In all vascular plants, phloem and xylem tissues are located next to each other, and there is clear evidence that these tissues exchange water. Therefore, drought should also lead to water shortage in the phloem. In this review, theories used in phloem transport models have been applied to drought conditions, with the goal of shedding light on how phloem transport failure might occur. The review revealed that phloem failure could occur either because of viscosity build-up at the source sites or by a failure to maintain phloem water status and cell turgor. Which one of these dominates depends on the hydraulic permeability of phloem conduit walls. Impermeable walls will lead to viscosity build-up affecting flow rates, while permeable walls make the plant more susceptible to phloem turgor failure. Current empirical evidence suggests that phloem failure resulting from phloem turgor collapse is the more likely mechanism at least in relatively isohydric plants.
引用
收藏
页码:1751 / 1759
页数:9
相关论文
共 73 条
[1]   Temperature sensitivity of drought-induced tree mortality portends increased regional die-off under global-change-type drought [J].
Adams, Henry D. ;
Guardiola-Claramonte, Maite ;
Barron-Gafford, Greg A. ;
Villegas, Juan Camilo ;
Breshears, David D. ;
Zou, Chris B. ;
Troch, Peter A. ;
Huxman, Travis E. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (17) :7063-7066
[2]   A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests [J].
Allen, Craig D. ;
Macalady, Alison K. ;
Chenchouni, Haroun ;
Bachelet, Dominique ;
McDowell, Nate ;
Vennetier, Michel ;
Kitzberger, Thomas ;
Rigling, Andreas ;
Breshears, David D. ;
Hogg, E. H. ;
Gonzalez, Patrick ;
Fensham, Rod ;
Zhang, Zhen ;
Castro, Jorge ;
Demidova, Natalia ;
Lim, Jong-Hwan ;
Allard, Gillian ;
Running, Steven W. ;
Semerci, Akkin ;
Cobb, Neil .
FOREST ECOLOGY AND MANAGEMENT, 2010, 259 (04) :660-684
[3]  
Allison I., 2009, COPENHAGEN DIAGNOSIS
[4]   Linking definitions, mechanisms, and modeling of drought-induced tree death [J].
Anderegg, William R. L. ;
Berry, Joseph A. ;
Field, Christopher B. .
TRENDS IN PLANT SCIENCE, 2012, 17 (12) :693-700
[5]   The roles of hydraulic and carbon stress in a widespread climate-induced forest die-off [J].
Anderegg, William R. L. ;
Berry, Joseph A. ;
Smith, Duncan D. ;
Sperry, John S. ;
Anderegg, Leander D. L. ;
Field, Christopher B. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (01) :233-237
[6]  
[Anonymous], 1996, PHOTOASSIMILATE DIST
[7]  
Bird R. B., 2002, TRANSPORT PHENOMENA, P40
[8]   Stomatal closure during leaf dehydration, correlation with other leaf physiological traits [J].
Brodribb, TJ ;
Holbrook, NM .
PLANT PHYSIOLOGY, 2003, 132 (04) :2166-2173
[9]   Water relations link carbon and oxygen isotope discrimination to phloem sap sugar concentration in Eucalyptus globulus [J].
Cernusak, LA ;
Arthur, DJ ;
Pate, JS ;
Farquhar, GD .
PLANT PHYSIOLOGY, 2003, 131 (04) :1544-1554
[10]  
CHAPIN FS, 1990, ANNU REV ECOL SYST, V21, P423, DOI 10.1146/annurev.es.21.110190.002231