A Perspective of Epigenetic Regulation in Radiotherapy

被引:26
作者
Peng, Qin [1 ,2 ,3 ]
Weng, Kegui [2 ,3 ,4 ]
Li, Shitian [2 ,3 ]
Xu, Richard [2 ,3 ]
Wang, Yingxiao [2 ,3 ]
Wu, Yongzhong [4 ]
机构
[1] Inst Syst & Phys Biol, Shenzhen Bay Lab, Shenzhen, Peoples R China
[2] Univ Calif San Diego, Dept Bioengn, La Jolla, CA 92093 USA
[3] Univ Calif San Diego, Inst Engn Med, La Jolla, CA 92093 USA
[4] Chongqing Univ, Canc Hosp, Chongqing Canc Inst, Chongqing Canc Hosp, Chongqing, Peoples R China
关键词
radiotherapy; epigenetic modification; chromatin remodeling; FRET; live cell imaging;
D O I
10.3389/fcell.2021.624312
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Radiation therapy (RT) has been employed as a tumoricidal modality for more than 100 years and on 470,000 patients each year in the United States. The ionizing radiation causes genetic changes and results in cell death. However, since the biological mechanism of radiation remains unclear, there is a pressing need to understand this mechanism to improve the killing effect on tumors and reduce the side effects on normal cells. DNA break and epigenetic remodeling can be induced by radiotherapy. Hence the modulation of histone modification enzymes may tune the radiosensitivity of cancer cells. For instance, histone deacetylase (HDAC) inhibitors sensitize irradiated cancer cells by amplifying the DNA damage signaling and inhibiting double-strand DNA break repair to influence the irradiated cells' survival. However, the combination of epigenetic drugs and radiotherapy has only been evaluated in several ongoing clinical trials for limited cancer types, partly due to a lack of knowledge on the potential mechanisms on how radiation induces epigenetic regulation and chromatin remodeling. Here, we review recent advances of radiotherapy and radiotherapy-induced epigenetic remodeling and introduce related technologies for epigenetic monitoring. Particularly, we exploit the application of fluorescence resonance energy transfer (FRET) biosensors to visualize dynamic epigenetic regulations in single living cells and tissue upon radiotherapy and drug treatment. We aim to bridge FRET biosensor, epigenetics, and radiotherapy, providing a perspective of using FRET to assess epigenetics and provide guidance for radiotherapy to improve cancer treatment. In the end, we discuss the feasibility of a combination of epigenetic drugs and radiotherapy as new approaches for cancer therapeutics.
引用
收藏
页数:15
相关论文
共 145 条
[1]   Low dose irradiation of thyroid cells reveals a unique transcriptomic and epigenetic signature in RET/PTC-positive cells [J].
Abou-El-Ardat, Khalil ;
Monsieurs, Pieter ;
Anastasov, Natasa ;
Atkinson, Mike ;
Derradji, Hanane ;
De Meyer, Tim ;
Bekaert, Sofie ;
Van Criekinge, Wim ;
Baatout, Sarah .
MUTATION RESEARCH-FUNDAMENTAL AND MOLECULAR MECHANISMS OF MUTAGENESIS, 2012, 731 (1-2) :27-40
[2]   Glucose starvation impairs DNA repair in tumour cells selectively by blocking histone acetylation [J].
Ampferl, Rena ;
Rodemann, Hans Peter ;
Mayer, Claus ;
Hoefling, Tobias Tim Alexander ;
Dittmann, Klaus .
RADIOTHERAPY AND ONCOLOGY, 2018, 126 (03) :465-470
[3]  
[Anonymous], 2013, CANC PRINCIPLES PRAC
[4]   Stable expression of FRET biosensors: A new light in cancer research [J].
Aoki, Kazuhiro ;
Komatsu, Naoki ;
Hirata, Eishu ;
Kamioka, Yuji ;
Matsuda, Michiyuki .
CANCER SCIENCE, 2012, 103 (04) :614-619
[5]   miR-9 and let-7g enhance the sensitivity to ionizing radiation by suppression of NFκB1 [J].
Arora, Himanshu ;
Qureshi, Rehana ;
Jin, Shunzi ;
Park, Ae-Kyoung ;
Park, Woong-Yang .
EXPERIMENTAL AND MOLECULAR MEDICINE, 2011, 43 (05) :298-304
[6]   Transgenic mice expressing a cameleon fluorescent Ca2+ indicator in astrocytes and Schwann cells allow study of glial cell Ca2+ signals in situ and in vivo [J].
Atkin, Stan D. ;
Patel, Sundip ;
Kocharyan, Ara ;
Holtzclaw, Lynne A. ;
Weerth, Susanna H. ;
Schram, Vincent ;
Pickel, James ;
Russell, James T. .
JOURNAL OF NEUROSCIENCE METHODS, 2009, 181 (02) :212-226
[7]   A Guide to Fluorescent Protein FRET Pairs [J].
Bajar, Bryce T. ;
Wang, Emily S. ;
Zhang, Shu ;
Lin, Michael Z. ;
Chu, Jun .
SENSORS, 2016, 16 (09)
[8]   Temozolomide chemotherapy versus radiotherapy in high-risk low-grade glioma (EORTC 22033-26033): a randomised, open-label, phase 3 intergroup study [J].
Baumert, Brigitta G. ;
Hegi, Monika E. ;
van den Bent, Martin J. ;
von Deimling, Andreas ;
Gorlia, Thierry ;
Hoang-Xuan, Khe ;
Brandes, Alba A. ;
Kantor, Guy ;
Taphoorn, Martin J. B. ;
Ben Hassel, Mohamed ;
Hartmann, Christian ;
Ryan, Gail ;
Capper, David ;
Kros, Johan M. ;
Kurscheid, Sebastian ;
Wick, Wolfgang ;
Enting, Roelien ;
Reni, Michele ;
Thiessen, Brian ;
Dhermain, Frederic ;
Bromberg, Jacoline E. ;
Feuvret, Loic ;
Reijneveld, Jaap C. ;
Chinot, Olivier ;
Gijtenbeek, Johanna M. M. ;
Rossiter, John P. ;
Dif, Nicolas ;
Balana, Carmen ;
Bravo-Marques, Jose ;
Clement, Paul M. ;
Marosi, Christine ;
Tzuk-Shina, Tzahala ;
Nordal, Robert A. ;
Rees, Jeremy ;
Lacombe, Denis ;
Mason, Warren P. ;
Stupp, Roger .
LANCET ONCOLOGY, 2016, 17 (11) :1521-1532
[9]   Clinical epigenetics: seizing opportunities for translation [J].
Berdasco, Maria ;
Esteller, Manel .
NATURE REVIEWS GENETICS, 2019, 20 (02) :109-127
[10]   Two-photon imaging of intratumoral CD8+ T cell cytotoxic activity during adoptive T cell therapy in mice [J].
Breart, Beatrice ;
Lemaitre, Fabrice ;
Celli, Susanna ;
Bousso, Philippe .
JOURNAL OF CLINICAL INVESTIGATION, 2008, 118 (04) :1390-1397