Skew cyclic displacements and inversions of two innovative patterned Matrices

被引:16
作者
Jiang, Xiaoyu [1 ]
Hong, Kicheon [1 ]
机构
[1] Univ Suwon, Deptartment Informat & Telecommun Engn, Hwaseong Si 445743, Gyeonggi Do, South Korea
关键词
CUPL Toeplitz matrix; CUPL Hankel matrix; RSFMLR circulants; Skew cyclic displacement; Inverses; CIRCULANT MATRICES; TOEPLITZ; PRECONDITIONERS; HYPONORMALITY; DETERMINANTS; NUMBERS; RSFMLR;
D O I
10.1016/j.amc.2017.03.024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we deal mainly with a class of column upper-plus-lower (CUPL) Toeplitz matrices without Toeplitz structure, which are "close" to the Toeplitz matrices in the sense that their (-1, 1)-cyclic displacements coincide with cyclic displacement of some Toeplitz matrices. By constructing the corresponding displacement of the matrices, we derive the formulas on representation of the inverses of the CUPL Toeplitz matrices in the form of sums of products of factor (1, 1)-circulants and (-1, -1) -circulants. Furthermore, through the relation between the CUPL Toeplitz matrices and the CUPL Hankel matrices, the inverses of the CUPL Hankel matrices can be obtained as well. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:174 / 184
页数:11
相关论文
共 32 条
[1]   A VARIANT OF THE GOHBERG-SEMENCUL FORMULA INVOLVING CIRCULANT MATRICES [J].
AMMAR, G ;
GADER, P .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1991, 12 (03) :534-540
[2]  
Ammar G., 1990, INT S MTNS 89, V3, P421, DOI [10.5430/cns.v1n2p80, DOI 10.5430/CNS.V1N2P80]
[3]   Block-triangular preconditioning methods for linear third-order ordinary differential equations based on reduced-order sinc discretizations [J].
Bai, Zhong-Zhi ;
Ren, Zhi-Ru .
JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2013, 30 (03) :511-527
[4]   On sinc discretization and banded preconditioning for linear third-order ordinary differential equations [J].
Bai, Zhong-Zhi ;
Chan, Raymond H. ;
Ren, Zhi-Ru .
NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2011, 18 (03) :471-497
[5]  
Bai ZZ, 2004, J COMPUT MATH, V22, P833
[6]   ON INVERSION OF TOEPLITZ AND CLOSE TO TOEPLITZ MATRICES [J].
BENARTZI, A ;
SHALOM, T ;
SACKLER, R ;
SACKLER, B .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1986, 75 :173-192
[7]  
Brown A., 1964, J. Reine. Angew. Math, V213, P89
[8]   REGULAR REPRESENTATIONS OF SEMISIMPLE ALGEBRAS, SEPARABLE FIELD-EXTENSIONS, GROUP CHARACTERS, GENERALIZED CIRCULANTS, AND GENERALIZED CYCLIC CODES [J].
CHILLAG, D .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1995, 218 :147-183
[9]   HYPONORMALITY OF TOEPLITZ-OPERATORS [J].
COWEN, CC .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 103 (03) :809-812
[10]   MULTILEVEL APPROACH FOR SIGNAL RESTORATION PROBLEMS WITH TOEPLITZ MATRICES [J].
Espanol, Malena I. ;
Kilmer, Misha E. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2010, 32 (01) :299-319