On endoprimality of torsion-free abelian groups of rank 3

被引:2
|
作者
Kaarli, K [1 ]
Metsalu, K [1 ]
机构
[1] Univ Tartu, Inst Pure Math, EE-50090 Tartu, Estonia
关键词
endomorphisms; endoprimal algebras; abelian groups;
D O I
10.1023/B:AMHU.0000036287.52061.80
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper gives a complete description of the behaviour of torsion-free abelian groups of rank 3 with respect to endoprimality.
引用
收藏
页码:271 / 289
页数:19
相关论文
共 20 条
  • [1] On endoprimality of torsion-free abelian groups of rank 3
    Kalle Kaarli
    Kati Metsalu
    Acta Mathematica Hungarica, 2004, 104 : 271 - 289
  • [2] A torsion-free abelian group of finite rank exists whose quotient group modulo the square subgroup is not a nil-group
    Andruszkiewicz, R. R.
    Woronowicz, M.
    QUAESTIONES MATHEMATICAE, 2018, 41 (04) : 483 - 491
  • [3] Computable torsion abelian groups
    Melnikov, Alexander G.
    Ng, Keng Meng
    ADVANCES IN MATHEMATICS, 2018, 325 : 864 - 907
  • [4] A TORSION-FREE ABELIAN GROUP EXISTS WHOSE QUOTIENT GROUP MODULO THE SQUARE SUBGROUP IS NOT A NIL-GROUP
    Andruszkiewicz, R. R.
    Woronowicz, M.
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2016, 94 (03) : 449 - 456
  • [5] CHARACTERIZATION THE STRONGLY CO-HOPFIAN ABELIAN GROUPS IN THE CATEGORY OF ABELIAN TORSION GROUPS
    Abdelalim, Seddik
    JOURNAL OF MATHEMATICAL ANALYSIS, 2015, 6 (04): : 1 - 10
  • [6] Universal co-extensions of torsion abelian groups
    Argudin-Monroy, Alejandro
    Parra, Carlos E.
    JOURNAL OF ALGEBRA, 2024, 647 : 1 - 27
  • [7] On Sum-Free Subsets of Abelian Groups
    de Amorim, Renato Cordeiro
    AXIOMS, 2023, 12 (08)
  • [8] Fully inert subgroups of free Abelian groups
    Dikranjan, D.
    Salce, L.
    Zanardo, P.
    PERIODICA MATHEMATICA HUNGARICA, 2014, 69 (01) : 69 - 78
  • [9] Fully inert subgroups of free Abelian groups
    D. Dikranjan
    L. Salce
    P. Zanardo
    Periodica Mathematica Hungarica, 2014, 69 : 69 - 78
  • [10] Generalized Bassian and other mixed Abelian groups with bounded p-torsion
    V. Danchev, Peter
    Keef, Patrick W.
    JOURNAL OF ALGEBRA, 2025, 663 : 1 - 19