Hybrid finite-element/boundary-element method to calculate Oersted fields

被引:9
作者
Hertel, Riccardo [1 ]
Kakay, Attila [2 ]
机构
[1] Univ Strasbourg, CNRS UMR 7504, Inst Phys & Chim Mat Strasbourg, Strasbourg, France
[2] Forschungszentrum Julich, Peter Grunberg Inst PGI 6, D-52428 Julich, Germany
关键词
Oersted field; Micromagnetic simulation; Finite element method; Current density distribution; SPIN-POLARIZED CURRENT; DOMAIN-WALL; TRANSFER TORQUE; DRIVEN; DYNAMICS; EXCITATION; WAVES;
D O I
10.1016/j.jmmm.2014.06.047
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The article presents a general-purpose hybrid finite-element/boundary-element method (FEM/BEM) to calculate magnetostatic fields generated by stationary electric currents eras. The efficiency of this code lies in its ability to simulate Oersted fields in complex geometries with non-uniform current density distributions. As a precursor to the calculation of the Oersted field, an FEM algorithm is employed to calculate the electric current density distribution. The accuracy of the code is confirmed by comparison with analytic results. Two examples show how this method provides important numerical data that can be directly plugged into micromagnetic simulations: The current density distribution in a thin magnetic strip with a notch, and the Oersted field in a three-dimensional contact geometry; similar to the type commonly used in spin-torque driven nano-oscillators. It is argued that a precise calculation of both, the Oersted field and the current density distribution, is essential for a reliable simulation of current-driven micromagnetic processes. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:189 / 196
页数:8
相关论文
共 40 条
[1]   Time-resolved imaging of spin transfer switching:: Beyond the macrospin concept [J].
Acremann, Y ;
Strachan, JP ;
Chembrolu, V ;
Andrews, SD ;
Tyliszczak, T ;
Katine, JA ;
Carey, MJ ;
Clemens, BM ;
Siegmann, HC ;
Stöhr, J .
PHYSICAL REVIEW LETTERS, 2006, 96 (21)
[2]   Submicrometer ferromagnetic NOT gate and shift register [J].
Allwood, DA ;
Xiong, G ;
Cooke, MD ;
Faulkner, CC ;
Atkinson, D ;
Vernier, N ;
Cowburn, RP .
SCIENCE, 2002, 296 (5575) :2003-2006
[3]  
[Anonymous], 1999, CLASSICAL ELECTRODYN
[4]   Emission of spin waves by a magnetic multilayer traversed by a current [J].
Berger, L .
PHYSICAL REVIEW B, 1996, 54 (13) :9353-9358
[5]   Spin-torque driven magnetization dynamics: Micromagnetic modeling [J].
Berkov, D. V. ;
Miltat, J. .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2008, 320 (07) :1238-1259
[6]   Micromagnetic simulations of the magnetization precession induced by a spin-polarized current in a point-contact geometry (Invited) [J].
Berkov, D. V. ;
Gorn, N. L. .
JOURNAL OF APPLIED PHYSICS, 2006, 99 (08)
[7]  
Borm S., HIERARCHIAL MATRICES
[8]   FINITE-ELEMENT MODELING OF UNBOUNDED PROBLEMS USING TRANSFORMATIONS - A RIGOROUS, POWERFUL AND EASY SOLUTION [J].
BRUNOTTE, X ;
MEUNIER, G ;
IMHOFF, JF .
IEEE TRANSACTIONS ON MAGNETICS, 1992, 28 (02) :1663-1666
[9]   Fourier transform imaging of spin vortex eigenmodes -: art. no. 077207 [J].
Buess, M ;
Höllinger, R ;
Haug, T ;
Perzlmaier, K ;
Krey, U ;
Pescia, D ;
Scheinfein, MR ;
Weiss, D ;
Back, CH .
PHYSICAL REVIEW LETTERS, 2004, 93 (07) :077207-1
[10]   A review of finite element open boundary techniques for static and quasi-static electromagnetic field problems [J].
Chen, Q ;
Konrad, A .
IEEE TRANSACTIONS ON MAGNETICS, 1997, 33 (01) :663-676