Remarks on Blow-Up Phenomena in p-Laplacian Heat Equation with Inhomogeneous Nonlinearity

被引:3
作者
Alzahrani, Eadah Ahma
Majdoub, Mohamed [1 ]
机构
[1] Imam Abdulrahman Bin Faisal Univ, Dept Math, Coll Sci, POB 1982, Dammam, Saudi Arabia
来源
JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS | 2021年 / 34卷 / 01期
关键词
Parabolic problems; p-Laplacian equation; blow-up; positive initial energy; PARABOLIC EQUATIONS; NONEXISTENCE; EXISTENCE;
D O I
10.4208/jpde.v34.n1.3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the p-Laplace heat equation u(t)-Delta(p)u=zeta(t) f (u) in a bounded smooth domain. Using differential-inequality arguments, we prove blow-up results under suitable conditions on zeta, f, and the initial datum u(0). We also give an upper bound for the blow-up time in each case.
引用
收藏
页码:42 / 50
页数:9
相关论文
共 16 条
[1]   Blowup in diffusion equations: A survey [J].
Bandle, C ;
Brunner, H .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1998, 97 (1-2) :3-22
[2]   Blow-up in p-Laplacian heat equations with nonlinear boundary conditions [J].
Ding, Juntang ;
Shen, Xuhui .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2016, 67 (05)
[3]   Blow-up and critical exponents for nonlinear hyperbolic equations [J].
Galaktionov, VA ;
Pohozaev, SI .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 53 (3-4) :453-466
[4]   Existence and blow-up for higher-order semilinear parabolic equations: Majorizing order-preserving operators [J].
Galaktionov, VA ;
Pohozaev, SI .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2002, 51 (06) :1321-1338
[6]  
LEVINE HA, 1973, ARCH RATION MECH AN, V51, P371
[7]   Global existence and blow-up of weak solutions for a class of fractional p-Laplacian evolution equations [J].
Liao, Menglan ;
Liu, Qiang ;
Ye, Hailong .
ADVANCES IN NONLINEAR ANALYSIS, 2020, 9 (01) :1569-1591
[8]   Blow-up of the solution for a p-Laplacian equation with positive initial energy [J].
Liu, Wenjun ;
Wang, Mingxin .
ACTA APPLICANDAE MATHEMATICAE, 2008, 103 (02) :141-146
[9]   A note on blow up of solutions of a quasilinear heat equation with vanishing initial energy [J].
Messaoudi, SA .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 273 (01) :243-247
[10]   BLOW-UP PHENOMENA IN PARABOLIC PROBLEMS WITH TIME DEPENDENT COEFFICIENTS UNDER DIRICHLET BOUNDARY CONDITIONS [J].
Payne, L. E. ;
Philippin, G. A. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 141 (07) :2309-2318