Spinning bodies in curved spacetime

被引:19
作者
d'Ambrosi, G. [1 ]
Kumar, S. Satish [2 ]
van de Vis, J. [1 ,2 ]
van Holten, J. W. [1 ,2 ]
机构
[1] NIKHEF H, Sci Pk 105, NL-1098 XG Amsterdam, Netherlands
[2] Leiden Univ, Inst Lorentz, Niels Bohrweg 2, NL-2333 CA Leiden, Netherlands
来源
PHYSICAL REVIEW D | 2016年 / 93卷 / 04期
关键词
TEST PARTICLES; KERR FIELD; DYNAMICS; MOTION;
D O I
10.1103/PhysRevD.93.044051
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We study the motion of neutral and charged spinning bodies in curved spacetime in the test-particle limit. We construct equations of motion using a closed covariant Poisson-Dirac bracket formulation that allows for different choices of the Hamiltonian. We derive conditions for the existence of constants of motion and apply the formalism to the case of spherically symmetric spacetimes. We show that the periastron of a spinning body in a stable orbit in a Schwarzschild or Reissner-Nordstrom background not only precesses but also varies radially. By analyzing the stability conditions for circular motion we find the innermost stable circular orbit (ISCO) as a function of spin. It turns out that there is an absolute lower limit on the ISCOs for increasing prograde spin. Finally we establish that the equations of motion can also be derived from the Einstein equations using an appropriate energy-momentum tensor for spinning particles.
引用
收藏
页数:14
相关论文
共 37 条
[1]   SUPERSYMMETRIES AND PSEUDOCLASSICAL RELATIVISTIC ELECTRON [J].
BARDUCCI, A ;
CASALBUONI, R ;
LUSANNA, L .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1976, 35 (03) :377-399
[2]   PARTICLE SPIN DYNAMICS AS GRASSMANN VARIANT OF CLASSICAL MECHANICS [J].
BEREZIN, FA ;
MARINOV, MS .
ANNALS OF PHYSICS, 1977, 104 (02) :336-362
[3]   Spin-geodesic deviations in the Schwarzschild spacetime [J].
Bini, Donato ;
Geralico, Andrea ;
Jantzen, Robert T. .
GENERAL RELATIVITY AND GRAVITATION, 2011, 43 (04) :959-975
[4]   Third post-Newtonian dynamics of compact binaries: equations of motion in the centre-of-mass frame [J].
Blanchet, L ;
Iyer, BR .
CLASSICAL AND QUANTUM GRAVITY, 2003, 20 (04) :755-776
[5]   LAGRANGIAN FORMULATION OF CLASSICAL AND QUANTUM DYNAMICS OF SPINNING PARTICLES [J].
BRINK, L ;
DIVECCHIA, P ;
HOWE, P .
NUCLEAR PHYSICS B, 1977, 118 (1-2) :76-94
[6]  
Costa L. F. O., ARXIV12070470V2
[7]   Covariant hamiltonian spin dynamics in curved space-time [J].
d'Ambrosi, G. ;
Kumar, S. Satish ;
van Holten, J. W. .
PHYSICS LETTERS B, 2015, 743 :478-483
[8]  
de Sitter W, 1915, MON NOT R ASTRON SOC, V76, P0698
[9]   DYNAMICS OF EXTENDED BODIES IN GENERAL RELATIVITY .1. MOMENTUM AND ANGULAR MOMENTUM [J].
DIXON, WG .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1970, 314 (1519) :499-&
[10]   On a possible geometrical Interpretation of relativistic Quantum Theory [J].
Fock, V. ;
Iwanenko, D. .
ZEITSCHRIFT FUR PHYSIK, 1929, 54 (11-12) :798-802