Quadratic Finite Volume Method for a Nonlinear Elliptic Problem

被引:12
作者
Du, Yanwei [1 ]
Li, Yonghai [2 ]
Sheng, Zhiqiang [3 ]
机构
[1] Jilin Univ, Inst Math, Changchun 130012, Jilin, Peoples R China
[2] Jilin Univ, Sch Math, Changchun 130012, Jilin, Peoples R China
[3] Inst Appl Phys & Computat Math, Lab Computat Phys, POB 8009, Beijing 100088, Peoples R China
基金
中国国家自然科学基金;
关键词
Nonlinear elliptic problem; quadratic finite volume method; optimal error estimates; orthogonal conditions; GENERALIZED DIFFERENCE-METHODS; ELEMENT-METHOD; APPROXIMATION;
D O I
10.4208/aamm.OA-2017-0231
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, a quadratic finite volume method is applied to solve the nonlinear elliptic equation. Firstly, we construct a finite volume scheme for this nonlinear equation. Then, under certain assumptions, the boundedness and ellipticity of the corresponding bilinear form are obtained. Moreover, we get the optimal error estimates not only in H-1-norm but also in L-2-norm where the optimal error estimate in L-2-norm depends on the optimal dual partition. In addition, the effect of numerical integration is analyzed. To confirm the theoretical analysis, we solve the nonlinear equation by the Newton iteration method and prove the quadratic rate of convergence. The numerical results show the effectiveness of our method.
引用
收藏
页码:838 / 869
页数:32
相关论文
共 35 条
[1]   A priori error estimates for finite element methods with numerical quadrature for nonmonotone nonlinear elliptic problems [J].
Abdulle, Assyr ;
Vilmart, Gilles .
NUMERISCHE MATHEMATIK, 2012, 121 (03) :397-431
[2]   Uniqueness and nonuniqueness for the approximation of quasilinear elliptic equations [J].
Andre, N ;
Chipot, M .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1996, 33 (05) :1981-1994
[3]   A non-mortar mixed finite element method for elliptic problems on non-matching multiblock grids [J].
Arbogast, T ;
Yotov, I .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1997, 149 (1-4) :255-265
[4]  
Baranger J, 1996, ESAIM-MATH MODEL NUM, V30, P445
[5]   First-order convergence of multi-point flux approximation on triangular grids and comparison with mixed finite element methods [J].
Bause, Markus ;
Hoffmann, Joachim ;
Knabner, Peter .
NUMERISCHE MATHEMATIK, 2010, 116 (01) :1-29
[6]   Finite volume element method for monotone nonlinear elliptic problems [J].
Bi, Chunjia ;
Lin, Yanping ;
Yang, Min .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2013, 29 (04) :1097-1120
[7]  
CAI ZQ, 1991, NUMER MATH, V58, P713
[8]   THE FINITE VOLUME ELEMENT METHOD FOR DIFFUSION-EQUATIONS ON GENERAL TRIANGULATIONS [J].
CAI, ZQ ;
MANDEL, J ;
MCCORMICK, S .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1991, 28 (02) :392-402
[9]   A finite volume element method for a non-linear elliptic problem [J].
Chatzipantelidis, P ;
Ginting, V ;
Lazarov, RD .
NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2005, 12 (5-6) :515-546
[10]   Finite volume methods for elliptic PDE's: A new approach [J].
Chatzipantelidis, P .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2002, 36 (02) :307-324