Weak and strong measurement of a qubit using a switching-based detector

被引:32
作者
Ashhab, S. [1 ,2 ]
You, J. Q. [1 ,3 ,4 ]
Nori, Franco [1 ,2 ]
机构
[1] RIKEN, Adv Sci Inst, Inst Phys & Chem Res, Wako, Saitama 3510198, Japan
[2] Univ Michigan, Dept Phys, Michigan Ctr Theoret Phys, Ann Arbor, MI 48109 USA
[3] Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China
[4] Fudan Univ, Surface Phys Lab, Natl Key Lab, Shanghai 200433, Peoples R China
来源
PHYSICAL REVIEW A | 2009年 / 79卷 / 03期
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
measurement theory; quantum computing; QUANTUM; STATE;
D O I
10.1103/PhysRevA.79.032317
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We analyze the operation of a switching-based detector that probes a qubit's observable that does not commute with the qubit's Hamiltonian, leading to a nontrivial interplay between the measurement and free-qubit dynamics. In order to obtain analytical results and develop intuitive understanding of the different possible regimes of operation, we use a theoretical model where the detector is a quantum two-level system that is constantly monitored by a macroscopic system. We analyze how to interpret the outcome of the measurement and how the state of the qubit evolves while it is measured. We find that the answers to the above questions depend on the relation between the different parameters in the problem. In addition to the traditional strong-measurement regime, we identify a number of regimes associated with weak qubit-detector coupling. An incoherent detector whose switching time is measurable with high accuracy can provide high-fidelity information, but the measurement basis is determined only upon switching of the detector. An incoherent detector whose switching time can be known only with low accuracy provides a measurement in the qubit's energy eigenbasis with reduced measurement fidelity. A coherent detector measures the qubit in its energy eigenbasis and, under certain conditions, can provide high-fidelity information.
引用
收藏
页数:18
相关论文
共 59 条
  • [1] MEASUREMENT OF THE SCHRODINGER WAVE OF A SINGLE-PARTICLE
    AHARONOV, Y
    VAIDMAN, L
    [J]. PHYSICS LETTERS A, 1993, 178 (1-2) : 38 - 42
  • [2] Interqubit coupling mediated by a high-excitation-energy quantum object
    Ashhab, S.
    Niskanen, A. O.
    Harrabi, K.
    Nakamura, Y.
    Picot, T.
    de Groot, P. C.
    Harmans, C. J. P. M.
    Mooij, J. E.
    Nori, Franco
    [J]. PHYSICAL REVIEW B, 2008, 77 (01):
  • [3] Quantum nondemolition measurements of a qubit
    Averin, DV
    [J]. PHYSICAL REVIEW LETTERS, 2002, 88 (20) : 4 - 207901
  • [4] Quantum nondemolition readout using a Josephson bifurcation amplifier
    Boulant, N.
    Ithier, G.
    Meeson, P.
    Nguyen, F.
    Vion, D.
    Esteve, D.
    Siddiqi, I.
    Vijay, R.
    Rigetti, C.
    Pierre, F.
    [J]. PHYSICAL REVIEW B, 2007, 76 (01):
  • [5] Braginsky V. B., 1995, QUANTUM MEASUREMENT
  • [6] A simple model of quantum trajectories
    Brun, TA
    [J]. AMERICAN JOURNAL OF PHYSICS, 2002, 70 (07) : 719 - 737
  • [7] Superconducting quantum bits
    Clarke, John
    Wilhelm, Frank K.
    [J]. NATURE, 2008, 453 (7198) : 1031 - 1042
  • [8] Phase coherent dynamics of a superconducting flux qubit with capacitive bias readout
    Deppe, F.
    Mariantoni, M.
    Menzel, E. P.
    Saito, S.
    Kakuyanagi, K.
    Tanaka, H.
    Meno, T.
    Semba, K.
    Takayanagi, H.
    Gross, R.
    [J]. PHYSICAL REVIEW B, 2007, 76 (21)
  • [9] Effect of measurement on the decay rate of a quantum system
    Elattari, B
    Gurvitz, SA
    [J]. PHYSICAL REVIEW LETTERS, 2000, 84 (10) : 2047 - 2051
  • [10] Influence of measurement on the lifetime and the linewidth of unstable systems
    Elattari, B
    Gurvitz, SA
    [J]. PHYSICAL REVIEW A, 2000, 62 (03): : 12