Design of Optimal Hybrid Fractional Order PID Controller

被引:0
作者
Maurya, Rinki [1 ]
Bhandari, Manisha [1 ]
机构
[1] Rajasthan Tech Univ, Kota, India
来源
PROCEEDINGS OF THE FIRST IEEE INTERNATIONAL CONFERENCE ON POWER ELECTRONICS, INTELLIGENT CONTROL AND ENERGY SYSTEMS (ICPEICES 2016) | 2016年
关键词
Fractional Order System; Ziegler-Nichols Tuning Method; Astrom-Hagglund Tuning Method; TID Controller; PID Controller; FOMCON Toolbox;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This article proposes a hybrid fractional order PID controller optimized with Tilted integral derivative controller (TID) which gives an exquisite response. The coefficients of PID controller are tuned with ziegler-Nichols and Astrom-Hagglund method. FO-PID controller parameters i.e. proportional constant(Kp), integral constant (Ki) are taken by Ziegler-Nichols, derivative constant (Kd) by Astrom-Hagglund method and Tilted integral derivative controller parameters are taken by Astrom-Hagglund. In order to calculate required solutions, two non-linear equations are derived to find the fractional order of the integral term (lambda) and derivative term (mu). The step response shows the benefits of above discussed hybrid fractional order PID controller when compared with existing controller. Simulated results are represented on matlab 2012(a)
引用
收藏
页数:4
相关论文
共 13 条
[1]   Fractional Order Control - A Tutorial [J].
Chen, YangQuan ;
Petras, Ivo ;
Xue, Dingyue .
2009 AMERICAN CONTROL CONFERENCE, VOLS 1-9, 2009, :1397-+
[2]   REFINEMENTS OF THE ZIEGLER-NICHOLS TUNING FORMULA [J].
HANG, CC ;
ASTROM, KJ ;
HO, WK .
IEE PROCEEDINGS-D CONTROL THEORY AND APPLICATIONS, 1991, 138 (02) :111-118
[3]   OPERATIONAL CALCULUS FOR THE RIEMANN-LIOUVILLE FRACTIONAL DERIVATIVE WITH RESPECT TO A FUNCTION AND ITS APPLICATIONS [J].
Fahad, Hafiz Muhammad ;
Fernandez, Arran .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2021, 24 (02) :518-540
[4]  
Loverro A., 2004, FRACTIONAL CALCULUS
[5]  
Lurie Boris, 1994, 3 PARAMETER TUNABLE
[6]  
Munkhammar J.D., 2004, TJTJDM Project Report, V7, P1
[7]  
Padula F., 2015, Advances in Robust Fractional Control, P27
[8]  
Patel H.B., 2012, International Journal of Engineering Innovation and Research, V1, P425
[9]   Fractional-order systems and PI-λ-D-μ-controllers [J].
Podlubny, I .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1999, 44 (01) :208-214
[10]  
Podlubny Igor, 1994, FRACTIONAL ORDER SYS, V12