The asymptotic behaviour of solutions to y'(x) = cos [pi xy(x)] was investigated by Bender et al (2014 J. Phys. A: Math. Theor. 47 235204). They found, for example, a relation between the initial valuey(0) = a and the number of maxima that the solution exhibited. We present an alternative derivation of the asymptotic results that looks at the solutions in the regions x < y and x > y, and confirms the behaviour found previously for larger values of a. This method uses the small amplitude and high frequency of the oscillatory behaviour in the region x < y.
机构:
Washington Univ, Dept Phys, St Louis, MO 63130 USA
City Univ London, Dept Math Sci, London EC1V 0HB, EnglandWashington Univ, Dept Phys, St Louis, MO 63130 USA
Bender, Carl M.
论文数: 引用数:
h-index:
机构:
Fring, Andreas
Komijani, Javad
论文数: 0引用数: 0
h-index: 0
机构:
Washington Univ, Dept Phys, St Louis, MO 63130 USAWashington Univ, Dept Phys, St Louis, MO 63130 USA
机构:
Washington Univ, Dept Phys, St Louis, MO 63130 USA
City Univ London, Dept Math Sci, London EC1V 0HB, EnglandWashington Univ, Dept Phys, St Louis, MO 63130 USA
Bender, Carl M.
论文数: 引用数:
h-index:
机构:
Fring, Andreas
Komijani, Javad
论文数: 0引用数: 0
h-index: 0
机构:
Washington Univ, Dept Phys, St Louis, MO 63130 USAWashington Univ, Dept Phys, St Louis, MO 63130 USA