EQUIPARTITION OF ENERGY FOR NONAUTONOMOUS WAVE EQUATIONS

被引:1
作者
Goldstein, Gisele Ruiz [1 ]
Goldstein, Jerome A. [2 ]
De Cezaro, Fabiana Travessini [3 ]
机构
[1] Univ Memphis, Dept Math Sci, Dunn Hall 337, Memphis, TN 38152 USA
[2] Univ Memphis, Dept Math Sci, Dunn Hall 343, Memphis, TN 38152 USA
[3] Fed Univ Rio Grande, Dept Math Stat & Phys, Ave Italia,Km 08, BR-96203900 Rio Grande, RS, Brazil
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S | 2017年 / 10卷 / 01期
关键词
Equipartition of energy; nonautonomous system; asymptotics; wave equations; ASYMPTOTIC PROPERTY;
D O I
10.3934/dcdss.2017004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Consider wave equations of the form u"(t) + A(2)u(t) = 0 with A an injective selfadjoint operator on a complex Hilbert space H. The kinetic, potential, and total energies of a solution u are K(t) = parallel to u'(t)parallel to(2), P(t) = parallel to Au(t)parallel to(2), E(t) = K(t) + P(t). Finite energy solutions are those mild solutions for which E(t) is finite. For such solutions E(t) = E(0), that is, energy is conserved, and asymptotic equipartition of energy lim(t ->perpendicular to infinity) K(t) = lim(t ->perpendicular to infinity) P(t) = E(0)/2 holds for all finite energy mild solutions iff e(itA) -> 0 in the weak operator topology. In this paper we present the first extension of this result to the case where A is time dependent.
引用
收藏
页码:75 / 85
页数:11
相关论文
共 5 条