EQUIPARTITION OF ENERGY FOR NONAUTONOMOUS WAVE EQUATIONS
被引:1
作者:
Goldstein, Gisele Ruiz
论文数: 0引用数: 0
h-index: 0
机构:
Univ Memphis, Dept Math Sci, Dunn Hall 337, Memphis, TN 38152 USAUniv Memphis, Dept Math Sci, Dunn Hall 337, Memphis, TN 38152 USA
Goldstein, Gisele Ruiz
[1
]
Goldstein, Jerome A.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Memphis, Dept Math Sci, Dunn Hall 343, Memphis, TN 38152 USAUniv Memphis, Dept Math Sci, Dunn Hall 337, Memphis, TN 38152 USA
Goldstein, Jerome A.
[2
]
De Cezaro, Fabiana Travessini
论文数: 0引用数: 0
h-index: 0
机构:
Fed Univ Rio Grande, Dept Math Stat & Phys, Ave Italia,Km 08, BR-96203900 Rio Grande, RS, BrazilUniv Memphis, Dept Math Sci, Dunn Hall 337, Memphis, TN 38152 USA
De Cezaro, Fabiana Travessini
[3
]
机构:
[1] Univ Memphis, Dept Math Sci, Dunn Hall 337, Memphis, TN 38152 USA
[2] Univ Memphis, Dept Math Sci, Dunn Hall 343, Memphis, TN 38152 USA
[3] Fed Univ Rio Grande, Dept Math Stat & Phys, Ave Italia,Km 08, BR-96203900 Rio Grande, RS, Brazil
来源:
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S
|
2017年
/
10卷
/
01期
关键词:
Equipartition of energy;
nonautonomous system;
asymptotics;
wave equations;
ASYMPTOTIC PROPERTY;
D O I:
10.3934/dcdss.2017004
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
Consider wave equations of the form u"(t) + A(2)u(t) = 0 with A an injective selfadjoint operator on a complex Hilbert space H. The kinetic, potential, and total energies of a solution u are K(t) = parallel to u'(t)parallel to(2), P(t) = parallel to Au(t)parallel to(2), E(t) = K(t) + P(t). Finite energy solutions are those mild solutions for which E(t) is finite. For such solutions E(t) = E(0), that is, energy is conserved, and asymptotic equipartition of energy lim(t ->perpendicular to infinity) K(t) = lim(t ->perpendicular to infinity) P(t) = E(0)/2 holds for all finite energy mild solutions iff e(itA) -> 0 in the weak operator topology. In this paper we present the first extension of this result to the case where A is time dependent.