On the control volume arbitrariness in the Navier-Stokes equation

被引:4
作者
Espath, Luis [1 ]
机构
[1] Rhein Westfal TH Aachen, Dept Math, D-52062 Aachen, Nordrhein Westf, Germany
关键词
CAMASSA-HOLM EQUATIONS; ALPHA; MODEL; THERMODYNAMICS; FLUIDS;
D O I
10.1063/5.0037468
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We present a continuum theory to demonstrate the implications of considering general tractions developed on arbitrary control volumes where the surface enclosing it lacks smoothness. We then tailor these tractions to recover the Navier-Stokes-alpha beta equation and its thermodynamics. Consistent with the surface balances postulated to propose this theory, we provide an alternative approach to derive the natural boundary conditions.
引用
收藏
页数:7
相关论文
共 20 条
[1]   Numerical study of the Navier-Stokes- deconvolution model with pointwise mass conservation [J].
Breckling, Sean ;
Neda, Monika .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2018, 95 (09) :1727-1760
[2]   A sensitivity study of the Navier-Stokes-α model [J].
Breckling, Sean ;
Neda, Monika ;
Pahlevani, Fran .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (02) :666-689
[3]   The Camassa-Holm equations and turbulence [J].
Chen, S ;
Foias, C ;
Holm, DD ;
Olson, E ;
Titi, ES ;
Wynne, S .
PHYSICA D, 1999, 133 (1-4) :49-65
[4]   Camassa-Holm equations as a closure model for turbulent channel and pipe flow [J].
Chen, S ;
Foias, C ;
Holm, DD ;
Olson, E ;
Titi, ES ;
Wynne, S .
PHYSICAL REVIEW LETTERS, 1998, 81 (24) :5338-5341
[5]   A connection between the Camassa-Holm equations and turbulent flows in channels and pipes [J].
Chen, S ;
Foias, C ;
Holm, DD ;
Olson, E ;
Titi, ES ;
Wynne, S .
PHYSICS OF FLUIDS, 1999, 11 (08) :2343-2353
[6]   THE THERMODYNAMICS OF ELASTIC MATERIALS WITH HEAT CONDUCTION AND VISCOSITY [J].
COLEMAN, BD ;
NOLL, W .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1963, 13 (03) :167-178
[7]   THERMODYNAMICS, STABILITY, AND BOUNDEDNESS OF FLUIDS OF COMPLEXITY-2 AND FLUIDS OF SECOND GRADE [J].
DUNN, JE ;
FOSDICK, RL .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1974, 56 (03) :191-252
[8]   Phase-field gradient theory [J].
Espath, Luis ;
Calo, Victor .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2021, 72 (02)
[9]  
FOSDICK RL, 1989, ARCH RATION MECH AN, V105, P95
[10]   A generalized continuum theory with internal corner and surface contact interactions [J].
Fosdick, Roger .
CONTINUUM MECHANICS AND THERMODYNAMICS, 2016, 28 (1-2) :275-292