FLAIR-Wise Machine-Learning Classification and Lateralization of MRI-Negative 18F-FDG PET-Positive Temporal Lobe Epilepsy

被引:11
作者
Beheshti, Iman [1 ,2 ]
Sone, Daichi [3 ,4 ]
Maikusa, Norihide [3 ]
Kimura, Yukio [5 ]
Shigemoto, Yoko [5 ]
Sato, Noriko [5 ]
Matsuda, Hiroshi [2 ,5 ]
机构
[1] Univ Manitoba, Rady Fac Hlth Sci, Dept Human Anat & Cell Sci, Max Rady Coll Med, Winnipeg, MB, Canada
[2] Southern Tohoku Res Inst Neurosci, Cyclotron & Drug Discovery Res Ctr, Koriyama, Fukushima, Japan
[3] Natl Ctr Neurol & Psychiat, Integrat Brain Imaging Ctr, Kodaira, Tokyo, Japan
[4] UCL, Dept Clin & Expt Epilepsy, Inst Neurol, London, England
[5] Natl Ctr Neurol & Psychiat, Dept Radiol, Kodaira, Tokyo, Japan
基金
日本学术振兴会;
关键词
fluid-attenuated inversion recovery; temporal lobe epilepsy; machine-learning; feature extraction; MRI-negative focal epilepsy; WHITE-MATTER ABNORMALITIES;
D O I
10.3389/fneur.2020.580713
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Objective: In this study, we investigated the ability of fluid-attenuated inversion recovery (FLAIR) data coupled with machine-leaning algorithms to differentiate normal and epileptic brains and identify the laterality of focus side in temporal lobe epilepsy (TLE) patients with visually negative MRI. Materials and Methods: The MRI data were acquired on a 3-T MR system (Philips Medical Systems). After pre-proceeding stage, the FLAIR signal intensities were extracted from specific regions of interest, such as the amygdala, cerebral white matter, inferior temporal gyrus, middle temporal gyrus, parahippocampal gyrus, superior temporal gyrus, and temporal pole, and fed into a classification framework followed by a support vector machine as classifier. The proposed lateralization framework was assessed in a group of MRI-negative unilateral TLE patients (N = 42; 23 left TLE and 19 right TLE) and 34 healthy controls (HCs) based on a leave-one-out cross-validation strategy. Results: Using the FLAIR data, we obtained a 75% accuracy for discriminating the three groups, as well as 87.71, 83.01, and 76.19% accuracies for HC/right TLE, HC/left TLE, and left TLE/right TLE tasks, respectively. Interpretation: The experimental results show that FLAIR data can potentially be considered an informative biomarker for improving the pre-surgical diagnostic confidence in patients with MRI-negative TLE.
引用
收藏
页数:9
相关论文
共 18 条
[1]   White matter abnormalities in the anterior temporal lobe suggest the side of the seizure foci in temporal lobe epilepsy [J].
Adachi, Y. ;
Yagishita, A. ;
Arai, N. .
NEURORADIOLOGY, 2006, 48 (07) :460-464
[2]   Gray Matter and White Matter Abnormalities in Temporal Lobe Epilepsy Patients with and without Hippocampal Sclerosis [J].
Beheshti, Iman ;
Sone, Daichi ;
Farokhian, Farnaz ;
Maikusa, Norihide ;
Matsuda, Hiroshi .
FRONTIERS IN NEUROLOGY, 2018, 9
[3]   Learning to see the invisible: A data-driven approach to finding the underlying patterns of abnormality in visually normal brain magnetic resonance images in patients with temporal lobe epilepsy [J].
Bennett, Oscar F. ;
Kanber, Baris ;
Hoskote, Chandrashekar ;
Cardoso, M. Jorge ;
Ourselin, Sebastien ;
Duncan, John S. ;
Winston, Gavin P. .
EPILEPSIA, 2019, 60 (12) :2499-2507
[4]   Recommendations for the use of structural magnetic resonance imaging in the care of patients with epilepsy: A consensus report from the International League Against Epilepsy Neuroimaging Task Force [J].
Bernasconi, Andrea ;
Cendes, Fernando ;
Theodore, William H. ;
Gill, Ravnoor S. ;
Koepp, Matthias J. ;
Hogan, Robert Edward ;
Jackson, Graeme D. ;
Federico, Paolo ;
Labate, Angelo ;
Vaudano, Anna Elisabetta ;
Bluemcke, Ingmar ;
Ryvlin, Philippe ;
Bernasconi, Neda .
EPILEPSIA, 2019, 60 (06) :1054-1068
[5]   Detection of temporal lobe epilepsy using support vector machines in multi-parametric quantitative MR imaging [J].
Cantor-Rivera, Diego ;
Khan, Ali R. ;
Goubran, Maged ;
Mirsattari, Seyed M. ;
Peters, Terry M. .
COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2015, 41 :14-28
[6]   Temporal pole abnormalities detected by 3 T MRI in temporal lobe epilepsy due to hippocampal sclerosis: No influence on seizure outcome after surgery [J].
Casciato, Sara ;
Picardi, Angelo ;
D'Aniello, Alfredo ;
De Risi, Marco ;
Grillea, Giovanni ;
Quarato, Pier Paolo ;
Mascia, Addolorata ;
Grammaldo, Liliana G. ;
Meldolesi, Giulio Nicolo' ;
Morace, Roberta ;
Esposito, Vincenzo ;
Di Gennaro, Giancarlo .
SEIZURE-EUROPEAN JOURNAL OF EPILEPSY, 2017, 48 :74-78
[7]   FDG-PET improves surgical outcome in negative MRI Taylor-type focal cortical dysplasias [J].
Chassoux, F. ;
Rodrigo, S. ;
Semah, F. ;
Beuvon, F. ;
Landre, E. ;
Devaux, B. ;
Turak, B. ;
Mellerio, C. ;
Meder, J. -F. ;
Roux, F. -X. ;
Daumas-Duport, C. ;
Merlet, P. ;
Dulac, O. ;
Chiron, C. .
NEUROLOGY, 2010, 75 (24) :2168-2175
[8]   Voxel-based analysis of whole brain FLAIR at 3T detects focal cortical dysplasia [J].
Focke, Niels K. ;
Symms, Mark R. ;
Burdett, Jane L. ;
Duncan, John S. .
EPILEPSIA, 2008, 49 (05) :786-793
[9]   Machine Learning of DTI Structural Brain Connectomes for Lateralization of Temporal Lobe Epilepsy [J].
Kamiya, Kouhei ;
Amemiya, Shiori ;
Suzuki, Yuichi ;
Kunii, Naoto ;
Kawai, Kensuke ;
Mori, Harushi ;
Kunimatsu, Akira ;
Saito, Nobuhito ;
Aoki, Shigeki ;
Ohtomo, Kuni .
MAGNETIC RESONANCE IN MEDICAL SCIENCES, 2016, 15 (01) :121-129
[10]   Hybrid Imaging Worldwide-Challenges and Opportunities for the Developing World: A Report of a Technical Meeting Organized by IAEA [J].
Kashyap, Ravi ;
Dondi, Maurizio ;
Paez, Diana ;
Mariani, Guliano .
SEMINARS IN NUCLEAR MEDICINE, 2013, 43 (03) :208-223