Splitting algebras: Koszul, Cohen-Macaulay and numerically Koszul

被引:1
|
作者
Kloefkorn, Tyler [1 ]
Shelton, Brad [2 ]
机构
[1] Univ Arizona, Tucson, AZ 85721 USA
[2] Univ Oregon, Eugene, OR 97403 USA
关键词
Koszul algebra; Splitting algebra; Cohen Macaulay poset; Numerically Koszul; Order complex; DIRECTED-GRAPHS; HILBERT SERIES; RINGS; COMPLEXES;
D O I
10.1016/j.jalgebra.2014.08.050
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study a finite dimensional quadratic graded algebra R-Gamma defined from a finite ranked poset P. This algebra has been central to the study of the splitting algebras A(Gamma) introduced by Gelfand, Retakh, Serconek and Wilson [4]. Those algebras are known to be quadratic when Gamma satisfies a combinatorial condition known as uniform. A central question in this theory has been: when are the algebras Koszul? We prove that R-Gamma is Koszul and P is cyclic and uniform if and only if the poset is Cohen-Macaulay. We also show that the cohomology of the order complex of Gamma can be identified with certain cohomology groups defined internally to the ring R-Gamma, H-R Gamma (n, 0) (introduced in [2]) whenever Gamma is Cohen-Macaulay. Finally, we settle in the negative the long-standing question: Does numerically Koszul imply Koszul for algebras of the form R-Gamma. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:660 / 682
页数:23
相关论文
共 50 条
  • [31] Koszul algebras and finite Galois coverings
    Zhao Deke
    Han Yang
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2009, 52 (10): : 2145 - 2153
  • [32] Koszul and Gorenstein Properties for Homogeneous Algebras
    Roland Berger
    Nicolas Marconnet
    Algebras and Representation Theory, 2006, 9 : 67 - 97
  • [33] Koszul differential graded algebras and modules
    He, J. -W.
    Wu, Q. -S.
    RING THEORY 2007, PROCEEDINGS, 2009, : 69 - +
  • [34] Koszul-like algebras and modules
    Lu, Jia-Feng
    MATHEMATICAL NOTES, 2013, 93 (3-4) : 431 - 450
  • [35] Cohen-Macaulay, Gorenstein, complete intersection and regular defect for the tensor product of algebras
    Bouchiba, S.
    Conde-Lago, J.
    Majadas, J.
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2018, 222 (08) : 2257 - 2266
  • [36] Cohen-Macaulay Property of Feynman Integrals
    Tellander, Felix
    Helmer, Martin
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2023, 399 (02) : 1021 - 1037
  • [37] Cohen-Macaulay graphs with large girth
    Do Trong Hoang
    Nguyen Cong Minh
    Tran Nam Trung
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2015, 14 (07)
  • [38] A NEW CONSTRUCTION FOR COHEN-MACAULAY GRAPHS
    Mousivand, Amir
    Fakhari, Seyed Amin Seyed
    Yassemi, Siamak
    COMMUNICATIONS IN ALGEBRA, 2015, 43 (12) : 5104 - 5112
  • [39] ON SEQUENTIALLY COHEN-MACAULAY COMPLEXES AND POSETS
    Bjorner, Anders
    Wachs, Michelle
    Welker, Volkmar
    ISRAEL JOURNAL OF MATHEMATICS, 2009, 169 (01) : 295 - 316
  • [40] On sequentially Cohen-Macaulay complexes and posets
    Anders Björner
    Michelle Wachs
    Volkmar Welker
    Israel Journal of Mathematics, 2009, 169 : 295 - 316