ANISOTROPICALLY FOVEATED NONLOCAL WEIGHTS FOR JOINT SPARSE REPRESENTATION-BASED HYPERSPECTRAL CLASSIFICATION

被引:0
作者
He, Zhi [1 ]
Liu, Lin [1 ,2 ]
Zhu, Yuanhui [1 ]
Zhou, Suhong [1 ]
机构
[1] Sun Yat Sen Univ, Ctr Integrated Geog Informat Anal, Sch Geog & Planning, Guangzhou 510275, Guangdong, Peoples R China
[2] Univ Cincinnati, Dept Geog, Cincinnati, OH 45221 USA
来源
2015 7TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS) | 2015年
基金
国家高技术研究发展计划(863计划);
关键词
Classification; hyperspectral image (H-SI); joint sparse representation; nonlocal similarity; foveation; EMPIRICAL MODE DECOMPOSITION; IMAGE CLASSIFICATION;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Joint sparse representation has yielded significant advances in hyperspectral classification due to its ability to incorporate spatial information of neighboring pixels. However, challenges remain for exploring the interpixel correlation. In this paper, we propose anisotropically foveated nonlocal weights for joint sparse representation-based classification of hyperspectral image (HSI). To this end, two major aspects are involved: 1) different weights, which are determined by anisotropically foveated similarity, are assigned to different neighborhoods around the central test pixel. Anisotropic foveation operators involved in this step can mimic the non uniformity (i.e. center is sharp while periphery is blurred) of human visual system (HVS). 2) simultaneous orthogonal matching pursuit (SOMP) is utilized to obtain the coefficient matrix in joint sparse representation-based classifier (JSRC). Experiments conducted on the benchmark Indian Pines data demonstrate the promising performance of our proposed method.
引用
收藏
页数:4
相关论文
共 13 条
  • [1] Hyperspectral Image Classification via Kernel Sparse Representation
    Chen, Yi
    Nasrabadi, Nasser M.
    Tran, Trac D.
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2013, 51 (01): : 217 - 231
  • [2] Hyperspectral Image Classification Using Dictionary-Based Sparse Representation
    Chen, Yi
    Nasrabadi, Nasser M.
    Tran, Trac D.
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2011, 49 (10): : 3973 - 3985
  • [3] Classification of Hyperspectral Images by Using Extended Morphological Attribute Profiles and Independent Component Analysis
    Dalla Mura, Mauro
    Villa, Alberto
    Benediktsson, Jon Atli
    Chanussot, Jocelyn
    Bruzzone, Lorenzo
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2011, 8 (03) : 542 - 546
  • [4] Hyperspectral Image Classification Using Empirical Mode Decomposition With Spectral Gradient Enhancement
    Erturk, Alp
    Gullu, Mehmet Kemal
    Erturk, Sarp
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2013, 51 (05): : 2787 - 2798
  • [5] Advances in Spectral-Spatial Classification of Hyperspectral Images
    Fauvel, Mathieu
    Tarabalka, Yuliya
    Benediktsson, Jon Atli
    Chanussot, Jocelyn
    Tilton, James C.
    [J]. PROCEEDINGS OF THE IEEE, 2013, 101 (03) : 652 - 675
  • [6] Foi A, 2013, IEEE IMAGE PROC, P464, DOI 10.1109/ICIP.2013.6738096
  • [7] He Z, 2014, IEEE IMTC P, P422, DOI 10.1109/I2MTC.2014.6860780
  • [8] Kernel Sparse Multitask Learning for Hyperspectral Image Classification With Empirical Mode Decomposition and Morphological Wavelet-Based Features
    He, Zhi
    Wang, Qiang
    Shen, Yi
    Sun, Mingjian
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (08): : 5150 - 5163
  • [9] Multivariate Gray Model-Based BEMD for Hyperspectral Image Classification
    He, Zhi
    Wang, Qiang
    Shen, Yi
    Jin, Jing
    Wang, Yan
    [J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2013, 62 (05) : 889 - 904
  • [10] Spectral-Spatial Hyperspectral Image Segmentation Using Subspace Multinomial Logistic Regression and Markov Random Fields
    Li, Jun
    Bioucas-Dias, Jose M.
    Plaza, Antonio
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2012, 50 (03): : 809 - 823