Dynamics of polynomial automorphisms of Ck

被引:32
作者
Guedj, V
Sibony, N
机构
[1] Univ Toulouse 3, Lab Emile Picard, UMR 5580, FR-31062 Toulouse 04, France
[2] Univ Paris 11, UMR 8628, FR-91405 Orsay, France
来源
ARKIV FOR MATEMATIK | 2002年 / 40卷 / 02期
关键词
D O I
10.1007/BF02384535
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the dynamics of polynomial automorphisms of C-k. To an algebraically stable automorphism we associate positive closed currents which are invariant under f, considering f as a rational map on P-k. These currents give information on the dynamics and allow us to construct a canonical invariant measure which is shown to be mixing.
引用
收藏
页码:207 / 243
页数:37
相关论文
共 24 条
[1]  
24Walters P., 2000, An Introduction to Ergodic Theory, V79
[2]  
AHLFORS LV, 1973, TOPICS GEOMETRIC FUN
[3]   DISTRIBUTION OF PERIODIC POINTS OF POLYNOMIAL DIFFEOMORPHISMS OF C2 [J].
BEDFORD, E ;
LYUBICH, M ;
SMILLIE, J .
INVENTIONES MATHEMATICAE, 1993, 114 (02) :277-288
[4]   POLYNOMIAL DIFFEOMORPHISMS OF C2 .3. ERGODICITY, EXPONENTS AND ENTROPY OF THE EQUILIBRIUM MEASURE [J].
BEDFORD, E ;
SMILLIE, J .
MATHEMATISCHE ANNALEN, 1992, 294 (03) :395-420
[5]  
Bedford E., 1991, J. Am. Math. Soc., V4, P657
[6]  
Bedford E., 1999, COMPLEX GEOMETRIC AN, V222, P41, DOI [10.1090/conm/222/03175, DOI 10.1090/CONM/222/03175]
[7]  
BEDFORD E, 1998, CONFORM GEOM DYN, V2, P45
[8]  
Carleson Lennart, 1993, Complex dynamics
[9]   Green's functions for irregular quadratic polynomial automorphisms of C3 [J].
Coman, D ;
Fornæss, JE .
MICHIGAN MATHEMATICAL JOURNAL, 1999, 46 (03) :419-459
[10]   Note on pull-back and Lelong number of currents [J].
Favre, C .
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1999, 127 (03) :445-458