Mid-infrared frequency comb via coherent dispersive wave generation in silicon nitride nanophotonic waveguides

被引:224
作者
Guo, Hairun [1 ]
Herkommer, Clemens [1 ,2 ]
Billat, Adrien [3 ]
Grassani, Davide [3 ]
Zhang, Chuankun [1 ,4 ]
Pfeiffer, Martin H. P. [1 ]
Weng, Wenle [1 ]
Bres, Camille-Sophie [3 ]
Kippenberg, Tobias J. [1 ]
机构
[1] Ecole Polytech Fed Lausanne, LPQM, Lausanne, Switzerland
[2] TUM, Phys Dept, Munich, Germany
[3] Ecole Polytech Fed Lausanne, Photon Syst Lab PHOSL, Lausanne, Switzerland
[4] Tsinghua Univ, Beijing, Peoples R China
基金
欧洲研究理事会;
关键词
SPANNING SUPERCONTINUUM GENERATION; OPTICAL-FIBERS; MOLECULAR-SPECTROSCOPY; PHOTONIC CRYSTAL; MICRORESONATOR; LASER; SPECTROMETER;
D O I
10.1038/s41566-018-0144-1
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Mid-infrared optical frequency combs are of significant interest for molecular spectroscopy due to the large absorption of molecular vibrational modes on the one hand, and the ability to implement superior comb-based spectroscopic modalities with increased speed, sensitivity and precision on the other hand. Here, we demonstrate a simple, yet effective, method for the direct generation of mid-infrared optical frequency combs in the region from 2.5 to 4.0 mu m (that is, 2,500-4,000 cm(-1)), covering a large fraction of the functional group region, from a conventional and compact erbium-fibre-based femtosecond laser in the telecommunication band (that is, 1.55 mu m). The wavelength conversion is based on dispersive wave generation within the supercontinuum process in an unprecedented large-cross-section silicon nitride (Si3N4) waveguide with the dispersion lithographically engineered. The long-wavelength dispersive wave can perform as a mid-infrared frequency comb, whose coherence is demonstrated via optical heterodyne measurements. Such an approach can be considered as an alternative option to mid-infrared frequency comb generation. Moreover, it has the potential to realize compact dual-comb spectrometers. The generated combs also have a fine teeth-spacing, making them suitable for gas-phase analysis.
引用
收藏
页码:330 / +
页数:7
相关论文
共 55 条
[1]   Phase-stabilized, 1.5 W frequency comb at 2.8-4.8 μm [J].
Adler, Florian ;
Cossel, Kevin C. ;
Thorpe, Michael J. ;
Hartl, Ingmar ;
Fermann, Martin E. ;
Ye, Jun .
OPTICS LETTERS, 2009, 34 (09) :1330-1332
[2]  
Agrawal G. P., 2017, NONLINEAR FIBER OPTI, V5th
[3]   CHERENKOV RADIATION EMITTED BY SOLITONS IN OPTICAL FIBERS [J].
AKHMEDIEV, N ;
KARLSSON, M .
PHYSICAL REVIEW A, 1995, 51 (03) :2602-2607
[4]   Cavity-enhanced dual-comb spectroscopy [J].
Bernhardt, Birgitta ;
Ozawa, Akira ;
Jacquet, Patrick ;
Jacquey, Marion ;
Kobayashi, Yohei ;
Udem, Thomas ;
Holzwarth, Ronald ;
Guelachvili, Guy ;
Haensch, Theodor W. ;
Picque, Nathalie .
NATURE PHOTONICS, 2010, 4 (01) :55-57
[5]   Direct frequency comb measurement of OD plus CO → DOCO kinetics [J].
Bjork, B. J. ;
Bui, T. Q. ;
Heckl, O. H. ;
Changala, P. B. ;
Spaun, B. ;
Heu, P. ;
Follman, D. ;
Deutsch, C. ;
Cole, G. D. ;
Aspelmeyer, M. ;
Okumura, M. ;
Ye, J. .
SCIENCE, 2016, 354 (6311) :444-448
[6]   Dispersion-optimized multicladding silicon nitride waveguides for nonlinear frequency generation from ultraviolet to mid-infrared [J].
Boggio, J. M. Chavez ;
Monux, A. Ortega ;
Modotto, D. ;
Fremberg, T. ;
Bodenmuller, D. ;
Giannone, D. ;
Roth, M. M. ;
Hansson, T. ;
Wabnitz, S. ;
Silvestre, E. ;
Zimmermann, L. .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2016, 33 (11) :2402-2413
[7]  
Carlson D. R, 2017, PREPRINT
[8]   Self-referenced frequency combs using high-efficiency silicon-nitride waveguides [J].
Carlson, David R. ;
Hickstein, Daniel D. ;
Lind, Alex ;
Droste, Stefan ;
Westly, Daron ;
Nader, Nima ;
Coddington, Ian ;
Newbury, Nathan R. ;
Srinivasan, Kartik ;
Diddams, Scott A. ;
Papp, Scott B. .
OPTICS LETTERS, 2017, 42 (12) :2314-2317
[9]   Nonlinear pulse compression in optical fibers: scaling laws and numerical analysis [J].
Chen, CM ;
Kelley, PL .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2002, 19 (09) :1961-1967
[10]  
Coddington I, 2016, OPTICA, V3, P414, DOI [10.1364/optica.3.000414, 10.1364/OPTICA.3.000414]