Solitons and breather waves for the generalized Konopelchenko-Dubrovsky-Kaup-Kupershmidt system in fluid mechanics, ocean dynamics and plasma physics

被引:71
作者
Deng, Gao-Fu [1 ,2 ]
Gao, Yi-Tian [1 ,2 ]
Ding, Cui-Cui [1 ,2 ]
Su, Jing-Jing [1 ,2 ]
机构
[1] Beijing Univ Aeronaut & Astronaut, Minist Of Educ, Key Lab Fluid Mech, Beijing 100191, Peoples R China
[2] Beijing Univ Aeronaut & Astronaut, Natl Lab Computat Fluid Dynam, Beijing 100191, Peoples R China
基金
中国国家自然科学基金;
关键词
Fluid mechanics; Ocean dynamics; Plasma physics; (2+1)-dimensional generalized; Konopelchenko-Dubrovsky-Kaup-Kupershmidt; system; Solitons; Breather waves; Pfaffian technique; Wronskian technique; KADOMTSEV-PETVIASHVILI EQUATIONS; ROGUE WAVES; TERMS;
D O I
10.1016/j.chaos.2020.110085
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Under investigation in this paper is the (2+1)-dimensional generalized Konopelchenko-Dubrovsky-KaupKupershmidt system, which can be used to describe certain situations in fluid mechanics, ocean dynamics and plasma physics. The Nth-order Pfaffian and Wronskian solutions are derived via the Pfaffian and Wronskian techniques, respectively, where N is a positive integer. Asymptotic analysis implies that the interaction between the two solitons is elastic with certain conditions. Furthermore, we obtain the breather waves according to the extended homoclinic test technique. Propagation of the breather waves indicates that the breather waves can evolve periodically along a straight line with a certain angle with the x and y axes, and their wave lengthes, amplitudes and velocities remain unchanged during the propagation. (c) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:10
相关论文
共 55 条
[1]  
[Anonymous], 2020, J MAGN MAGN MATER, DOI DOI 10.1016/J.JMMM.2019.165871
[2]  
[Anonymous], 2020, PHYS FLUIDS, DOI DOI 10.1016/J.CHAOS.2020.109950
[3]   Pfaffian solutions to a (3+1)-dimensional generalized B-type Kadomtsev-Petviashvili equation and its modified counterpart [J].
Asaad, Magdy G. ;
Ma, Wen-Xiu .
APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (09) :5524-5542
[4]   Generalized Darboux Transformations, Rogue Waves, and Modulation Instability for the Coherently Coupled Nonlinear Schrodinger Equations in Nonlinear Optics [J].
Chen, Su-Su ;
Tian, Bo ;
Sun, Yan ;
Zhang, Chen-Rong .
ANNALEN DER PHYSIK, 2019, 531 (08)
[5]   Conservation laws, binary Darboux transformations and solitons for a higher-order nonlinear Schrodinger system [J].
Chen, Su-Su ;
Tian, Bo ;
Liu, Lei ;
Yuan, Yu-Qiang ;
Zhang, Chen-Rong .
CHAOS SOLITONS & FRACTALS, 2019, 118 :337-346
[6]   Further results on delay-dependent stability for neutral singular systems via state decomposition method [J].
Chen, Wenbin ;
Gao, Fang ;
She, Jinhua ;
Xia, Weifeng .
CHAOS SOLITONS & FRACTALS, 2020, 141
[7]   Ablowitz-Kaup-Newell-Segur system, conservation laws and Backlund transformation of a variable-coefficient Korteweg-de Vries equation in plasma physics, fluid dynamics or atmospheric science [J].
Chen, Yu-Qi ;
Tian, Bo ;
Qu, Qi-Xing ;
Li, He ;
Zhao, Xue-Hui ;
Tian, He-Yuan ;
Wang, Meng .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2020, 34 (25)
[8]   Reduction and analytic solutions of a variable-coefficient Korteweg-de Vries equation in a fluid, crystal or plasma [J].
Chen, Yu-Qi ;
Tian, Bo ;
Qu, Qi-Xing ;
Li, He ;
Zhao, Xue-Hui ;
Tian, He-Yuan ;
Wang, Meng .
MODERN PHYSICS LETTERS B, 2020, 34 (26)
[9]  
Dai CQ, 2016, NONLINEAR DYNAM, V86, P999, DOI 10.1007/s11071-016-2941-8
[10]   Lie group analysis, solitons, self-adjointness and conservation laws of the modified Zakharov-Kuznetsov equation in an electron-positron-ion magnetoplasma [J].
Du, Xia-Xia ;
Tian, Bo ;
Qu, Qi-Xing ;
Yuan, Yu-Qiang ;
Zhao, Xue-Hui .
CHAOS SOLITONS & FRACTALS, 2020, 134