A Unified Approach to Regularity Problems for the 3D Navier-Stokes and Euler Equations: the Use of Kolmogorov's Dissipation Range

被引:26
作者
Cheskidov, A. [1 ]
Shvydkoy, R. [1 ]
机构
[1] Univ Illinois, Dept Math Stat & Comp Sci, Chicago, IL 60607 USA
基金
美国国家科学基金会;
关键词
CRITERION;
D O I
10.1007/s00021-014-0167-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Motivated by Kolmogorov's theory of turbulence we present a unified approach to the regularity problems for the 3D Navier-Stokes and Euler equations. We introduce a dissipation wavenumber that separates low modes where the Euler dynamics is predominant from the high modes where the viscous forces take over. Then using an indifferent to the viscosity technique we obtain a new regularity criterion which is weaker than every Ladyzhenskaya-Prodi-Serrin condition in the viscous case, and reduces to the Beale-Kato-Majda criterion in the inviscid case. In the viscous case we prove that Leray-Hopf solutions are regular provided , which improves our previous condition. We also show that for all Leray-Hopf solutions. Finally, we prove that Leray-Hopf solutions are regular when the time-averaged spatial intermittency is small, i.e., close to Kolmogorov's regime.
引用
收藏
页码:263 / 273
页数:11
相关论文
共 15 条
[2]   REMARKS ON THE BREAKDOWN OF SMOOTH SOLUTIONS FOR THE 3-D EULER EQUATIONS [J].
BEALE, JT ;
KATO, T ;
MAJDA, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 94 (01) :61-66
[3]  
Bjorland C., WEAK SPACE LOG TIME
[4]   Regularity Criteria for the Three-dimensional Navier-Stokes Equations [J].
Cao, Chongsheng ;
Titi, Edriss S. .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2008, 57 (06) :2643-2661
[5]  
Cheskidov A, 2010, ARCH RATION MECH AN, V195, P159, DOI 10.1007/s00205-009-0265-2
[6]  
da Veiga HB, 2000, J MATH FLUID MECH, V2, P99
[7]   L3,∞-solutions of the Navier-Stokes equations and backward uniqueness [J].
Escauriaza, L ;
Seregin, G ;
Sverák, V .
RUSSIAN MATHEMATICAL SURVEYS, 2003, 58 (02) :211-250
[8]  
Frisch U., 1995, TURBULENCE LEGACY AN, DOI [10.1017/CBO9781139170666, DOI 10.1017/CBO9781139170666]
[9]  
Kato T., 1972, Journal of Functional Analysis, V9, P296, DOI 10.1016/0022-1236(72)90003-1
[10]   THE LOCAL-STRUCTURE OF TURBULENCE IN INCOMPRESSIBLE VISCOUS-FLUID FOR VERY LARGE REYNOLDS-NUMBERS [J].
KOLMOGOROV, AN .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1991, 434 (1890) :9-13