A New Modified Barzilai-Borwein Gradient Method for the Quadratic Minimization Problem

被引:8
作者
Zheng, Yutao [1 ]
Zheng, Bing [1 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Peoples R China
基金
美国国家科学基金会;
关键词
BB gradient method; Modified BB gradient method; Multi-step method; Global convergence; STEEPEST DESCENT;
D O I
10.1007/s10957-016-1008-9
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
A new modified Barzilai-Borwein gradient method for solving the strictly convex quadratic minimization problem is proposed by properly changing the Barzilai-Borwein stepsize such that some certain multi-step quasi-Newton condition is satisfied. The global convergence is analyzed. Numerical experiments show that the new method can outperform some known gradient methods.
引用
收藏
页码:179 / 186
页数:8
相关论文
共 13 条
[1]   2-POINT STEP SIZE GRADIENT METHODS [J].
BARZILAI, J ;
BORWEIN, JM .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1988, 8 (01) :141-148
[2]   New algorithms for singly linearly constrained quadratic programs subject to lower and upper bounds [J].
Dai, YH ;
Fletcher, R .
MATHEMATICAL PROGRAMMING, 2006, 106 (03) :403-421
[3]   Alternate step gradient method [J].
Dai, YH .
OPTIMIZATION, 2003, 52 (4-5) :395-415
[4]   Alternate minimization gradient method [J].
Dai, YH ;
Yuan, YX .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2003, 23 (03) :377-393
[5]   R-linear convergence of the Barzilai and Borwein gradient method [J].
Dai, YH ;
Liao, LZ .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2002, 22 (01) :1-10
[6]   On spectral properties of steepest descent methods [J].
De Asmundis, Roberta ;
di Serafino, Daniela ;
Riccio, Filippo ;
Toraldo, Gerardo .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2013, 33 (04) :1416-1435
[7]  
Ford J.A., 1993, Optim. Methods Softw, V2, P357, DOI [10.1080/10556789308805550, DOI 10.1080/10556789308805550]
[8]   MULTISTEP QUASI-NEWTON METHODS FOR OPTIMIZATION [J].
FORD, JA ;
MOGHRABI, IA .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1994, 50 (1-3) :305-323
[9]   Gradient method with retards and generalizations [J].
Friedlander, A ;
Martínez, JM ;
Molina, B ;
Raydan, M .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 36 (01) :275-289
[10]   On the steepest descent algorithm for quadratic functions [J].
Gonzaga, Clovis C. ;
Schneider, Ruana M. .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2016, 63 (02) :523-542