Universal statistics of the critical depinning force of elastic systems in random media

被引:44
作者
Bolech, CJ [1 ]
Rosso, A [1 ]
机构
[1] Univ Geneva, DPMC, CH-1211 Geneva 4, Switzerland
关键词
D O I
10.1103/PhysRevLett.93.125701
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the rescaled probability distribution of the critical depinning force of an elastic system in a random medium. We put in evidence the underlying connection between the critical properties of the depinning transition and the extreme value statistics of correlated variables. The distribution is Gaussian for all periodic systems, while in the case of random manifolds there exists a family of universal functions ranging from the Gaussian to the Gumbel distribution. Both of these scenarios are a priori experimentally accessible in finite, macroscopic, disordered elastic systems.
引用
收藏
页码:125701 / 1
页数:4
相关论文
共 34 条
[31]   Roughness at the depinning threshold for a long-range elastic string [J].
Rosso, A ;
Krauth, W .
PHYSICAL REVIEW E, 2002, 65 (02)
[32]   Front propagation in random media: From extremal to activated dynamics [J].
Skoe, R ;
Vandembroucq, D ;
Roux, S .
INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2002, 13 (06) :751-757
[33]   Domain wall creep in epitaxial ferroelectric Pb(Zr0.2Ti0.8)O3 thin films -: art. no. 097601 [J].
Tybell, T ;
Paruch, P ;
Giamarchi, T ;
Triscone, JM .
PHYSICAL REVIEW LETTERS, 2002, 89 (09)
[34]  
VANDEMBROUCQ D, CONDMAT0311485