Cesium power: low Cs+ levels impart stability to perovskite solar cells

被引:153
作者
Deepa, Melepurath [1 ]
Salado, Manuel [2 ]
Calio, Laura [2 ]
Kazim, Samrana [2 ]
Shivaprasad, S. M. [3 ]
Ahmad, Shahzada [2 ]
机构
[1] Indian Inst Technol Hyderabad, Dept Chem, Sangareddy 502285, Telangana, India
[2] Abengoa Energia Solar No 1, Abengoa Res, Seville 41014, Spain
[3] Jawaharlal Nehru Ctr Adv Sci Res, Int Ctr Mat Sci, Chem & Phys Mat Unit, Bangalore 560064, Karnataka, India
关键词
PHOTOELECTRON; ABSORBER;
D O I
10.1039/c6cp08022g
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Towards increasing the stability of perovskite solar cells, the addition of Cs+ is found to be a rational approach. Recently triple cation based perovskite solar cells were found to be more effective in terms of stability and efficiency. Heretofore they were unexplored, so we probed the Cs/MA/FA (cesium/methyl ammonium/formamidinium) cation based perovskites by X-ray photoelectron spectroscopy (XPS) and correlated their compositional features with their solar cell performances. The Cs+ content was found to be optimum at 5%, when incorporated in the (MA(0.15)FA(0.85)) Pb(I0.85Br0.15)(3) lattice, because the corresponding device yielded the highest fill factor compared to the perovskite without Cs+ and with 10% Cs+. XPS studies distinctly reveal how Cs+ aids in maintaining the expected stoichiometric ratios of I : Pb2+, I: N and Br: Pb2+ in the perovskites, and how the valence band (VB) edge is dependent on the Cs+ proportion, which in turn governs the open circuit voltage. Even at a low content of 5%, Cs+ resides deep within the absorber layer, and ensures minimum distortion of the VB level (compared to 0% and 10% Cs+ perovskites) upon Ar+ sputtering, thus allowing the formation of a stable robust material that delivers excellent solar cell response. This study which brings out the role of Cs+ is anticipated to be of paramount significance to further engineer the composition and improve device performances.
引用
收藏
页码:4069 / 4077
页数:9
相关论文
共 26 条
[1]   Cesium Lead Halide Perovskites with Improved Stability for Tandem Solar Cells [J].
Beal, Rachel E. ;
Slotcavage, Daniel J. ;
Leijtens, Tomas ;
Bowring, Andrea R. ;
Belisle, Rebecca A. ;
Nguyen, William H. ;
Burkhard, George F. ;
Hoke, Eric T. ;
McGehee, Michael D. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2016, 7 (05) :746-751
[2]   CHEMISORPTIVE REPLACEMENT OF SURFACE OXYGEN BY HYDROGEN HALIDES (HCL AND HBR) AT PB(110) SURFACES - PHOTOELECTRON SPECTROSCOPIC AND KINETIC EVIDENCE FOR A METASTABLE CHLORIDE OVERLAYER [J].
BLAKE, PG ;
CARLEY, AF ;
DICASTRO, V ;
ROBERTS, MW .
JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS I, 1986, 82 :723-737
[3]   Sequential deposition as a route to high-performance perovskite-sensitized solar cells [J].
Burschka, Julian ;
Pellet, Norman ;
Moon, Soo-Jin ;
Humphry-Baker, Robin ;
Gao, Peng ;
Nazeeruddin, Mohammad K. ;
Graetzel, Michael .
NATURE, 2013, 499 (7458) :316-+
[4]   Hole-Transport Materials for Perovskite Solar Cells [J].
Calio, Laura ;
Kazim, Samrana ;
Graetzel, Michael ;
Ahmad, Shahzada .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (47) :14522-14545
[5]   Cesium-doped methylammonium lead iodide perovskite light absorber for hybrid solar cells [J].
Choi, Hyosung ;
Jeong, Jaeki ;
Kim, Hak-Beom ;
Kim, Seongbeom ;
Walker, Bright ;
Kim, Gi-Hwan ;
Kim, Jin Young .
NANO ENERGY, 2014, 7 :80-85
[6]   AN X-RAY PHOTOELECTRON AND AUGER-ELECTRON SPECTROSCOPIC STUDY OF THE ADSORPTION OF MOLECULAR-IODINE ON URANIUM METAL AND URANIUM-DIOXIDE [J].
DILLARD, JG ;
MOERS, H ;
KLEWENEBENIUS, H ;
KIRCH, G ;
PFENNIG, G ;
ACHE, HJ .
JOURNAL OF PHYSICAL CHEMISTRY, 1984, 88 (18) :4104-4111
[7]   Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells [J].
Eperon, Giles E. ;
Stranks, Samuel D. ;
Menelaou, Christopher ;
Johnston, Michael B. ;
Herz, Laura M. ;
Snaith, Henry J. .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (03) :982-988
[8]  
Green MA, 2014, NAT PHOTONICS, V8, P506, DOI [10.1038/NPHOTON.2014.134, 10.1038/nphoton.2014.134]
[9]   Vapor phase conversion of PbI2 to CH3NH3PbI3: spectroscopic evidence for formation of an intermediate phase [J].
Jain, Sagar Motilal ;
Philippe, Bertrand ;
Johansson, Erik M. J. ;
Park, Byung-Wook ;
Rensmo, Hakan ;
Edvinsson, Tomas ;
Boschloo, Gerrit .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (07) :2630-2642
[10]  
Jeon N. J., 2014, NAT MATER, V13, P1, DOI DOI 10.1038/NMAT4014