Ensemble confidence intervals for binomial proportions

被引:13
作者
Park, Hayeon [1 ]
Leemis, Lawrence M. [1 ]
机构
[1] Coll William & Mary, Dept Math, Williamsburg, VA 23187 USA
关键词
binomial distribution; confidence interval; coverage; statistical computing; COVERAGE PROBABILITY; APPROXIMATE; ESTIMATORS; LIMITS;
D O I
10.1002/sim.8189
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We propose two measures of performance for a confidence interval for a binomial proportion p: the root mean squared error and the mean absolute deviation. We also devise a confidence interval for p based on the actual coverage function that combines several existing approximate confidence intervals. This "Ensemble" confidence interval has improved statistical properties over the constituent confidence intervals. Software in an R package, which can be used in devising and assessing these confidence intervals, is available on CRAN.
引用
收藏
页码:3460 / 3475
页数:16
相关论文
共 25 条
[1]   Approximate is better than "exact" for interval estimation of binomial proportions [J].
Agresti, A ;
Coull, BA .
AMERICAN STATISTICIAN, 1998, 52 (02) :119-126
[2]   On small-sample confidence intervals for parameters in discrete distributions [J].
Agresti, A ;
Min, YY .
BIOMETRICS, 2001, 57 (03) :963-971
[3]   ON ESTIMATING BINOMIAL RESPONSE RELATIONS [J].
ANSCOMBE, FJ .
BIOMETRIKA, 1956, 43 (3-4) :461-464
[4]   Confidence curves and improved exact confidence intervals for discrete distributions [J].
Blaker, H .
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2000, 28 (04) :783-798
[5]   BINOMIAL CONFIDENCE-INTERVALS [J].
BLYTH, CR ;
STILL, HA .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1983, 78 (381) :108-116
[6]   APPROXIMATE BINOMIAL CONFIDENCE-LIMITS [J].
BLYTH, CR .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1986, 81 (395) :843-855
[7]   Interval estimation for a binomial proportion - Comment - Rejoinder [J].
Brown, LD ;
Cai, TT ;
DasGupta, A ;
Agresti, A ;
Coull, BA ;
Casella, G ;
Corcoran, C ;
Mehta, C ;
Ghosh, M ;
Santner, TJ ;
Brown, LD ;
Cai, TT ;
DasGupta, A .
STATISTICAL SCIENCE, 2001, 16 (02) :101-133
[9]  
Clopper CJ, 1934, BIOMETRIKA, V26, P404, DOI 10.2307/2331986
[10]  
COPAS JB, 1992, J ROY STAT SOC D-STA, V41, P569