Plasma elongation effects on temperature gradient driven instabilities and geodesic acoustic modes

被引:32
作者
Gao, Zhe [1 ]
Peng, Lili [1 ]
Wang, Ping [1 ]
Dong, Jiaqi [2 ]
Sanuki, H. [3 ]
机构
[1] Tsinghua Univ, Dept Engn Phys, Beijing 100084, Peoples R China
[2] SW Inst Phys, Chengdu 610041, Peoples R China
[3] Natl Inst Fus Sci, Gifu 5095292, Japan
基金
芬兰科学院; 美国国家科学基金会;
关键词
NONCIRCULAR TOKAMAK GEOMETRY; TOROIDALLY AXISYMMETRICAL PLASMAS; ASPECT-RATIO; ZONAL FLOWS; TURBULENCE; SHAPE; SIMULATIONS; EXCITATION; WAVES;
D O I
10.1088/0029-5515/49/4/045014
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Plasma shaping effects on temperature gradient driven instabilities and geodesic acoustic oscillations are investigated with gyrokinetic theory and a local magnetohydrodynamic equilibrium model. In particular, we focus on the effect of the elongation kappa, including its radial derivative s(kappa) = (r/kappa)(partial derivative kappa/partial derivative r), in the large aspect ratio limit. An analytical formula of the dependence of the geodesic acoustic mode (GAM) frequency on the elongation is given. It is found that the GAM frequency sharply decreases with increasing elongation by the dependence of [(2-alpha s(kappa))/(kappa(2) + 1)](1/2) with alpha = 0.5-1, which comes from the modification of ion classical polarization balanced by that of curvature drift polarization. The dependence of the critical threshold of the ETG/ITG instability on the elongation is numerically studied and a semi-analytical formula is given as (R-0/L-Tc)/(R-0/L-Tc)(s kappa=0,kappa=1) = (1 + 0.36s(kappa))[1 + 0.11(kappa - 1)], where R-0 is the major radius and L-Tc is the critical scale length of the temperature gradient.
引用
收藏
页数:8
相关论文
共 35 条
[1]   Effects of non-circular tokamak geometry on ion-temperature-gradient driven modes [J].
Anderson, J ;
Nordman, H ;
Weiland, J .
PLASMA PHYSICS AND CONTROLLED FUSION, 2000, 42 (05) :545-555
[2]   The role of plasma elongation on the linear damping of zonal flows [J].
Angelino, P. ;
Garbet, X. ;
Villard, L. ;
Bottino, A. ;
Jolliet, S. ;
Ghendrih, Ph. ;
Grandgirard, V. ;
McMillan, B. F. ;
Sarazin, Y. ;
Dif-Pradalier, G. ;
Tran, T. M. .
PHYSICS OF PLASMAS, 2008, 15 (06)
[3]   Effects of plasma shaping on nonlinear gyrokinetic turbulence [J].
Belli, E. A. ;
Hammett, G. W. ;
Dorland, W. .
PHYSICS OF PLASMAS, 2008, 15 (09)
[4]   Excitation of zonal flow by drift waves in toroidal plasmas [J].
Chen, L ;
Lin, ZH ;
White, R .
PHYSICS OF PLASMAS, 2000, 7 (08) :3129-3132
[5]   RESISTIVE BALLOONING MODES IN AN AXISYMMETRIC TOROIDAL PLASMA WITH LONG MEAN FREE-PATH [J].
CONNOR, JW ;
CHEN, L .
PHYSICS OF FLUIDS, 1985, 28 (07) :2201-2208
[6]   Frequency scaling and localization of geodesic acoustic modes in ASDEX Upgrade [J].
Conway, G. D. ;
Troester, C. ;
Scott, B. ;
Hallatschek, K. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2008, 50 (05)
[7]   Short wavelength ion temperature gradient instability in toroidal plasmas [J].
Gao, Z ;
Sanuki, H ;
Itoh, K ;
Dong, JQ .
PHYSICS OF PLASMAS, 2005, 12 (02)
[8]   Multiple eigenmodes of geodesic acoustic mode in collisionless plasmas [J].
Gao, Zhe ;
Itoh, K. ;
Sanuki, H. ;
Dong, J. Q. .
PHYSICS OF PLASMAS, 2006, 13 (10)
[9]   Eigenmode analysis of geodesic acoustic modes [J].
Gao, Zhe ;
Itoh, K. ;
Sanuki, H. ;
Dong, J. Q. .
PHYSICS OF PLASMAS, 2008, 15 (07)
[10]   STABILITY ANALYSIS OF THE ION-TEMPERATURE-GRADIENT-DRIVEN MODE IN NONCIRCULAR TOKAMAK GEOMETRY [J].
GUO, SC ;
ROMANELLI, F .
PHYSICS OF PLASMAS, 1994, 1 (05) :1101-1104