Modeling of microfluidic microbial fuel cells using quantitative bacterial transport parameters

被引:32
作者
Mardanpour, Mohammad Mandi [1 ,2 ]
Yaghmaei, Soheila [2 ]
Kalantar, Mohammad [2 ]
机构
[1] Res Inst Petr Ind, Technol & Innovat Grp, Tehran, Iran
[2] Sharif Univ Technol, Dept Chem & Petr Engn, Tehran, Iran
关键词
Microfluidic microbial fuel cell; Modeling; Bacterial transport parameters; Chemotaxis; BIOFILM; DIFFUSION; MEMBRANE; GLUCOSE; GROWTH;
D O I
10.1016/j.jpowsour.2017.01.012
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The objective of present study is to analyze the dynamic modeling of bioelectrochemical processes and improvement of the performance of previous models using quantitative data of bacterial transport parameters. The main deficiency of previous MFC models concerning spatial distribution of biocatalysts is an assumption of initial distribution of attached/suspended bacteria on electrode or in anolyte bulk which is the foundation for bioflim formation. In order to modify this imperfection, the quantification of chemotactic motility to understand the mechanisms of the suspended microorganisms' distribution in anolyte and/or their attachment to anode surface to extend the biofilm is implemented numerically. The spatial and temporal distributions of the bacteria, as well as the dynamic behavior of the anolyte and biofilm are simulated. The performance of the microfluidic MFC as a chemotaxis assay is assessed by analyzing the bacteria activity, substrate variation, bioelectricity production rate and the influences of external resistance on the biofilm and anolyte's features. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:1017 / 1031
页数:15
相关论文
共 47 条
[31]   A computational model for biofilm-based microbial fuel cells [J].
Picioreanu, Cristian ;
Head, Ian M. ;
Katuri, Krishna P. ;
van Loosdrecht, Mark C. M. ;
Scott, Keith .
WATER RESEARCH, 2007, 41 (13) :2921-2940
[32]   Model based evaluation of the effect of pH and electrode geometry on microbial fuel cell performance [J].
Picioreanu, Cristian ;
van Loosdrecht, Mark C. M. ;
Curtis, Thomas P. ;
Scott, Keith .
BIOELECTROCHEMISTRY, 2010, 78 (01) :8-24
[33]   Mathematical modeling based evaluation and simulation of boron removal in bioelectrochemical systems [J].
Ping, Qingyun ;
Abu-Reesh, Ibrahim M. ;
He, Zhen .
SCIENCE OF THE TOTAL ENVIRONMENT, 2016, 569 :1380-1389
[34]   Multi-Population Model of a Microbial Electrolysis Cell [J].
Pinto, R. P. ;
Srinivasan, B. ;
Escapa, A. ;
Tartakovsky, B. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2011, 45 (11) :5039-5046
[35]   A two-population bio-electrochemical model of a microbial fuel cell [J].
Pinto, R. P. ;
Srinivasan, B. ;
Manuel, M. -F. ;
Tartakovsky, B. .
BIORESOURCE TECHNOLOGY, 2010, 101 (14) :5256-5265
[36]   MODELING THE MICROBIAL GROWTH OF TWO Escherichia coli STRAINS IN A MULTI-SUBSTRATE ENVIRONMENT [J].
Poccia, M. E. ;
Beccaria, A. J. ;
Dondo, R. G. .
BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING, 2014, 31 (02) :347-354
[37]  
Rittmann B. E., 2012, ENV BIOTECHNOLOGY PR
[38]   TRANSPORT MODELS FOR CHEMOTACTIC CELL-POPULATIONS BASED ON INDIVIDUAL CELL BEHAVIOR [J].
RIVERO, MA ;
TRANQUILLO, RT ;
BUETTNER, HM ;
LAUFFENBURGER, DA .
CHEMICAL ENGINEERING SCIENCE, 1989, 44 (12) :2881-2897
[39]   Parameter estimation and characterization of a single-chamber microbial fuel cell for dairy wastewater treatment [J].
Sedaqatvand, Ramin ;
Esfahany, Mohsen Nasr ;
Behzad, Tayebeh ;
Mohseni, Madjid ;
Mardanpour, Mohammad Mandi .
BIORESOURCE TECHNOLOGY, 2013, 146 :247-253
[40]   Overview of mathematical approaches used to model bacterial chemotaxis II: Bacterial populations [J].
Tindall, M. J. ;
Maini, P. K. ;
Porter, S. L. ;
Armitage, J. P. .
BULLETIN OF MATHEMATICAL BIOLOGY, 2008, 70 (06) :1570-1607