Tolerance of Three Quinoa Cultivars (Chenopodium quinoa Willd.) to Salinity and Alkalinity Stress During Germination Stage

被引:24
|
作者
Stoleru, Vasile [1 ]
Slabu, Cristina [2 ]
Vitanescu, Maricel [1 ]
Peres, Catalina [1 ]
Cojocaru, Alexandru [1 ]
Covasa, Mihaela [2 ]
Mihalache, Gabriela [1 ,3 ]
机构
[1] Univ Agr Sci & Vet Med Ion Ionescu de la Brad, Dept Hort Technol, 3 M Sadoveanu, Iasi 700440, Romania
[2] Univ Agr Sci & Vet Med Ion Ionescu de la Brad, Dept Plant Physiol, 3 M Sadoveanu, Iasi 700440, Romania
[3] Alexandru Ioan Cuza Univ, Integrated Ctr Environm Sci Studies North East Re, 11 Bd Carol, Iasi 700506, Romania
来源
AGRONOMY-BASEL | 2019年 / 9卷 / 06期
关键词
Chenopodium quinoa; salt tolerance; germination; proline; SEED-GERMINATION; SALT STRESS; GROWTH; MECHANISMS; COMPONENTS; TRAITS;
D O I
10.3390/agronomy9060287
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Salinity and alkalinity are two of the main causes for productivity losses in agriculture. Quinoa represents a better alternative for global food products such as rice and wheat flour due to its high nutritional value and abiotic stress tolerance. Three cultivars of quinoa seeds (Titicaca, Puno and Vikinga) originating from Denmark were used in the experiments. The seeds were germinated under the action of three different salts (NaCl, Na2SO4, Na2CO3) at 0-300 mM for five days and the germination rate was calculated. Biometric measurements (radicle and hypocotyls lengths) andbiochemical determinations (proline) were performed in order to quantify the tolerance and the effects of salt and alkali stresses on the three quinoa cultivars. The germination rates showed that all cultivars were affected by the presence of salts, especially at 300 mM. The most sensitive cultivar to salts was Titicaca cultivar which evinced the lowest germination rate, regardless of the salt and the concentration used. On the other hand, Puno and Vikinga cultivars showed the best tolerance to the saline and alkaline stresses. Among the salts used, Na2CO3 had the most detrimental effects on the germination of quinoa seeds inhibiting the germination by similar to 50% starting with 50 mM. More affected was the growth of hypocotyls in the presence of this salt, being completely inhibited for the seeds of the Puno and Titicaca cultivars. Vikinga cultivar was the only one able to grow hypocotyls at 50 and 100 mM Na2CO3. Also, this cultivar had a high adaptability to NaCl stress when significant differences were observed for the germination rates at 200 and 300 mM as compared to 0 mM NaCl, due to the proline production whose content was significantly greater than that of the untreated seeds. In conclusion, the tolerance of the three quinoa cultivars to saline and alkali stress varied with the salt type, salt concentration and tested cultivar, with the Vikinga and Puno cultivars showing the best potential for growing under saline conditions.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] SALINITY TOLERANCE OF QUINOA (CHENOPODIUM QUINOA WILLD.) GENOTYPES TO ELEVATED NACL CONCENTRATIONS AT GERMINATION AND SEEDLING STAGES
    Al-Naggar, A. M. M.
    ABD El-Salam, R. M.
    Hassan, A. I. A.
    El-Moghazi, M. M. A.
    Ahmed, A. A.
    SABRAO JOURNAL OF BREEDING AND GENETICS, 2023, 55 (05): : 1789 - 1802
  • [2] Salt tolerance mechanisms in quinoa (Chenopodium quinoa Willd.)
    Adolf, Verena Isabelle
    Jacobsen, Sven-Erik
    Shabala, Sergey
    ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2013, 92 : 43 - 54
  • [3] Aerodynamic properties of two quinoa (Chenopodium quinoa Willd.) cultivars
    Caetano, Jordana Moura
    Devilla, Ivano Alessandro
    Melo, Pamella de Carvalho
    Servulo, Ana Claudia Oliveira
    Ferreira, Rafael Batista
    REVISTA BRASILEIRA DE CIENCIAS AGRARIAS-AGRARIA, 2022, 17 (01):
  • [4] Accumulation of Ions in Shoot and Seed of Quinoa (Chenopodium quinoa Willd.) Under Salinity Stress
    Maleki, Parisa
    Saadat, Saeed
    Bahrami, Hossein Ali
    Rezaei, Hamed
    Esmaeelnejad, Leila
    COMMUNICATIONS IN SOIL SCIENCE AND PLANT ANALYSIS, 2019, 50 (06) : 782 - 793
  • [5] Effects of germination and cooking on the nutritional properties of three varieties of quinoa (Chenopodium quinoa Willd.)
    Valenzuela Antezana, Ricardo Nahuel
    Mita Ticona, Giovanni
    Zapana Yucra, Franklyn Elard
    Quilla Cayllahua, David
    Miranda Alejo, Rufo
    Mita Churqui, Ulrich Jhersy
    REVISTA INVESTIGACIONES ALTOANDINAS-JOURNAL OF HIGH ANDEAN RESEARCH, 2015, 17 (02): : 169 - 172
  • [6] Physiological and Morphological Responses of two Quinoa Cultivars (Chenopodium quinoa Willd.) to Drought Stress
    Ali, Oudou Issa
    Fghire, Rachid
    Anaya, Fatima
    Benlhabib, Ouafae
    Wahbi, Said
    GESUNDE PFLANZEN, 2019, 71 (02): : 123 - 133
  • [7] Mitigating Salinity Stress in Quinoa (Chenopodium quinoa Willd.) with Biochar and Superabsorber Polymer Amendments
    Derbali, Imed
    Derbali, Walid
    Gharred, Jihed
    Manaa, Arafet
    Slama, Ines
    Koyro, Hans-Werner
    PLANTS-BASEL, 2024, 13 (01):
  • [8] The influence of temperature on seed germination rate in quinoa (Chenopodium quinoa Willd.)
    Jacobsen, SE
    Bach, AP
    SEED SCIENCE AND TECHNOLOGY, 1998, 26 (02) : 515 - 523
  • [9] Reproductive partitioning in sea level quinoa (Chenopodium quinoa Willd.) cultivars
    Bertero, H. D.
    Ruiz, R. A.
    FIELD CROPS RESEARCH, 2010, 118 (01) : 94 - 101
  • [10] Silicon mitigates nutritional stress in quinoa (Chenopodium quinoa Willd.)
    Ana Carolina Sales
    Cid Naudi Silva Campos
    Jonas Pereira de Souza Junior
    Dalila Lopes da Silva
    Kamilla Silva Oliveira
    Renato de Mello Prado
    Larissa Pereira Ribeiro Teodoro
    Paulo Eduardo Teodoro
    Scientific Reports, 11