The Minimal Growth Rate of Cocompact Coxeter Groups in Hyperbolic 3-space

被引:7
作者
Kellerhals, Ruth [1 ]
Kolpakov, Alexander [1 ]
机构
[1] Univ Fribourg, Dept Math, Fribourg Perolles, Switzerland
来源
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES | 2014年 / 66卷 / 02期
关键词
Hyperbolic Coxeter group; growth rate; Salem number; KLEINIAN GROUP; SALEM-NUMBERS; VOLUME; POLYHEDRA; LATTICES; SERIES;
D O I
10.4153/CJM-2012-062-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Due to work of W. Parry it is known that the growth rate of a hyperbolic Coxeter group acting cocompactly on H-3 is a Salem number. This being the arithmetic situation, we prove that the simplex group (3,5,3) has the smallest growth rate among all cocompact hyperbolic Coxeter groups, and that it is, as such, unique. Our approach provides a different proof for the analog situation in H-2 where E. Hironaka identified Lehmer's number as the minimal growth rate among all cocompact planar hyperbolic Coxeter groups and showed that it is (uniquely) achieved by the Coxeter triangle group (3,7).
引用
收藏
页码:354 / 372
页数:19
相关论文
共 27 条
[11]   The Lehmer polynomial and pretzel links [J].
Hironaka, E .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2001, 44 (04) :440-451
[12]  
ImHof H., 1990, Bull. Soc. Math. Belg. Ser. A, V42, P523
[13]   Organizing volumes of right-angled hyperbolic polyhedra [J].
Inoue, Taiyo .
ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2008, 8 (03) :1523-1565
[14]  
Kaplinskaja I.M., 1974, Math. Notes Acad. Sci. USSR, V15, P88
[15]   ON THE VOLUME OF HYPERBOLIC POLYHEDRA [J].
KELLERHALS, R .
MATHEMATISCHE ANNALEN, 1989, 285 (04) :541-569
[16]   Minimal co-volume hyperbolic lattices, II: Simple torsion in a Kleinian group [J].
Marshall, T. H. ;
Martin, G. J. .
ANNALS OF MATHEMATICS, 2012, 176 (01) :261-301
[17]  
Milnor J, 1968, J. Differential Geometry, V2, P1
[18]   GROWTH SERIES OF COXETER GROUPS AND SALEM-NUMBERS [J].
PARRY, W .
JOURNAL OF ALGEBRA, 1993, 154 (02) :406-415
[19]  
Prasolov V.V., 2004, ALGORITHMS COMPUTATI, V11
[20]  
Rotman J., 1998, Galois Theory