Shooting methods and topological transversality

被引:8
作者
Buffoni, B [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Dept Math, CH-1015 Lausanne, Switzerland
关键词
D O I
10.1017/S0308210500019314
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that shooting methods for homoclinic or heteroclinic orbits in dynamical systems may automatically guarantee the topological transversality of the stable and unstable manifolds. The interest of such results is twofold. First, these orbits persist under perturbations which destroy the structure allowing the shooting method and, second, topological transversality is often sufficient when some kind of transversality is required to obtain chaotic dynamics. We shall focus on heteroclinic solutions in the extended Fisher-Kolmogorov equation.
引用
收藏
页码:1137 / 1155
页数:19
相关论文
共 37 条
[1]  
BESSI U, 1995, ANN I H POINCARE-AN, V12, P1
[2]  
BOLOTIN S, 1994, NATO ADV SCI INST SE, V331, P173
[3]   INFINITELY MANY LARGE-AMPLITUDE HOMOCLINIC ORBITS FOR A CLASS OF AUTONOMOUS HAMILTONIAN-SYSTEMS [J].
BUFFONI, B .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1995, 121 (01) :109-120
[4]  
Buffoni B, 1996, COMMUN PUR APPL MATH, V49, P285, DOI 10.1002/(SICI)1097-0312(199603)49:3<285::AID-CPA3>3.3.CO
[5]  
2-#
[6]   GLOBAL EXISTENCE OF HOMOCLINIC AND PERIODIC-ORBITS FOR A CLASS OF AUTONOMOUS HAMILTONIAN-SYSTEMS [J].
BUFFONI, B ;
TOLAND, JF .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1995, 118 (01) :104-120
[7]   Plethora of solitary gravity-capillary water waves with nearly critical Bond and Froude numbers [J].
Buffoni, B ;
Groves, MD ;
Toland, JF .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1996, 354 (1707) :575-607
[8]  
Buffoni B., 1996, Journal of Dynamics and Differential Equations, V8, P221
[9]  
Champneys A. R., 1993, ADV COMPUT MATH, V1, P81, DOI [10.1007/BF02070822, DOI 10.1007/BF02070822]
[10]   BIFURCATION OF A PLETHORA OF MULTIMODAL HOMOCLINIC ORBITS FOR AUTONOMOUS HAMILTONIAN-SYSTEMS [J].
CHAMPNEYS, AR ;
TOLAND, JF .
NONLINEARITY, 1993, 6 (05) :665-721