Numerically induced bursting in a set of coupled neuronal oscillators

被引:13
作者
Medetov, Bekbolat [1 ]
Weiss, R. Gregor [2 ]
Zhanabaev, Zeinulla Zh. [1 ]
Zaks, Michael A. [2 ]
机构
[1] Al Farabi Kazakh Natl Univ, Phys Tech Dept, Alma Ata 050038, Kazakhstan
[2] Humboldt Univ, Inst Math, D-12489 Berlin, Germany
关键词
Bursting; FitzHugh-Nagumo equations; Numerical integration of ODEs; MODEL; MEMBRANE;
D O I
10.1016/j.cnsns.2014.07.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present our numerical observations on dynamics in the system of two linearly coupled FitzHugh-Nagumo oscillators close to the destabilization of the state of rest. Under the considered parameter values the system, if integrated sufficiently accurately, converges to small-scale periodic oscillations. However, minor numerical inaccuracies, which occur already at the default precision of the standard Runge-Kutta solver, lead to a breakup of periodicity and an onset of large-scale aperiodic bursting. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:1090 / 1098
页数:9
相关论文
共 50 条
  • [41] Suppressing bursting synchronization in a modular neuronal network with synaptic plasticity
    Wang, JiaYi
    Yang, XiaoLi
    Sun, ZhongKui
    COGNITIVE NEURODYNAMICS, 2018, 12 (06) : 625 - 636
  • [42] The nonlinear mechanism for the same responses of neuronal bursting to opposite self-feedback modulations of autapse
    Li, YuYe
    Gu, HuaGuang
    Jia, Bing
    Ding, XueLi
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2021, 64 (07) : 1459 - 1471
  • [43] Consequential noise-induced synchronization of indirectly coupled self-sustained oscillators
    Pankratova, E. V.
    Belykh, V. N.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2013, 222 (10) : 2509 - 2515
  • [44] Bursting and Synchronization of Coupled Neurons under Electromagnetic Radiation
    Hu, Xiaoyu
    Liu, Chongxin
    COMPLEXITY, 2019, 2019
  • [45] BURSTING AND TWO-PARAMETER BIFURCATION IN THE CHAY NEURONAL MODEL
    Duan, Lixia
    Yang, Zhuoqin
    Liu, Shenquan
    Gong, Dunwei
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2011, 16 (02): : 445 - 456
  • [46] Oscillator death in coupled biochemical oscillators
    Gedeon, Tomas
    Cummins, Breschine
    MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 2023, 35 (04) : 781 - 801
  • [47] Reentrant transition in coupled noisy oscillators
    Kobayashi, Yasuaki
    Kori, Hiroshi
    PHYSICAL REVIEW E, 2015, 91 (01)
  • [48] Adaptive Synchronizability of Coupled Oscillators With Switching
    Lou, Xuyang
    Sukyens, Johan A. K.
    PROCEEDINGS OF THE 2012 24TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2012, : 330 - 334
  • [49] Phase Control of Coupled Neuron Oscillators
    Irifune, Mayumi
    Fujii, Robert H.
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2013, 2013, 8131 : 296 - 303
  • [50] Susceptibility of large populations of coupled oscillators
    Daido, Hiroaki
    PHYSICAL REVIEW E, 2015, 91 (01)