The effect of the domain topology on the number of positive solutions of an elliptic Kirchhoff problem

被引:7
作者
Santos Junior, Joao R. [1 ]
机构
[1] Fed Univ Para, Fac Matemat, BR-66075110 Belem, Para, Brazil
关键词
Schrodinger-Kirchhoff type problem; Lusternik-Schnirelmann theory; Expanding domain; EXISTENCE; MULTIPLICITY; EQUATION;
D O I
10.1016/j.nonrwa.2015.10.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using minimax methods and Lusternik-Schnirelmann theory, we study multiple positive solutions for the Schrodinger-Kirchhoff equation M(integral(n lambda) vertical bar del u vertical bar(2)dx + integral(n lambda) u(2)dx) [-Delta u + u] = f(u) in Omega(lambda) = lambda Omega. The set Omega subset of R-3 is a smooth bounded domain, lambda > 0 is a parameter, M is a general continuous function and f is a superlinear continuous function with subcritical growth. Our main result relates, for large values of lambda, the number of solutions with the least number of closed and contractible in (Omega) over bar which cover (Omega) over bar. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:269 / 283
页数:15
相关论文
共 22 条
[1]   A RESULT OF MULTIPLICITY OF SOLUTIONS FOR A CLASS OF QUASILINEAR EQUATIONS [J].
Alves, Claudianor O. ;
Figueiredo, Giovany M. ;
Severo, Uberlandio B. .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2012, 55 :291-309
[2]   Nonlinear perturbations of a periodic Kirchhoff equation in RN [J].
Alves, Claudianor O. ;
Figueiredo, Giovany M. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (05) :2750-2759
[3]   On the number of solutions of NLS equations with magnetics fields in expanding domains [J].
Alves, Claudianor O. ;
Figueiredo, Giovany M. ;
Furtado, Marcelo F. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 251 (09) :2534-2548
[4]   Positive solutions for a quasilinear elliptic equation of Kirchhoff type [J].
Alves, CO ;
Corrêa, FJSA ;
Ma, TF .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2005, 49 (01) :85-93
[5]  
Alves CO, 2005, ADV NONLINEAR STUD, V5, P73
[6]  
[Anonymous], 1883, Mechanik
[7]  
[Anonymous], 1997, Minimax theorems
[8]  
Azzollini A, 2012, DIFFER INTEGRAL EQU, V25, P543
[9]   THE EFFECT OF THE DOMAIN TOPOLOGY ON THE NUMBER OF POSITIVE SOLUTIONS OF NONLINEAR ELLIPTIC PROBLEMS [J].
BENCI, V ;
CERAMI, G .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1991, 114 (01) :79-93
[10]   MULTIPLE POSITIVE SOLUTIONS OF SOME ELLIPTIC PROBLEMS VIA THE MORSE-THEORY AND THE DOMAIN TOPOLOGY [J].
BENCI, V ;
CERAMI, G .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1994, 2 (01) :29-48