All-optical reversible single-photon isolation at room temperature

被引:77
作者
Dong, Ming-Xin [1 ,2 ]
Xia, Ke-Yu [3 ,4 ,5 ]
Zhang, Wei-Hang [1 ,2 ]
Yu, Yi-Chen [1 ,2 ]
Ye, Ying-Hao [1 ,2 ]
Li, En-Ze [1 ,2 ]
Zeng, Lei [1 ,2 ]
Ding, Dong-Sheng [1 ,2 ]
Shi, Bao-Sen [1 ,2 ]
Guo, Guang-Can [1 ,2 ]
Nori, Franco [6 ,7 ]
机构
[1] Univ Sci & Technol China, Key Lab Quantum Informat, Hefei 230026, Anhui, Peoples R China
[2] Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat & Quantum P, Hefei 230026, Anhui, Peoples R China
[3] Nanjing Univ, Natl Lab Solid State Microstruct, Collaborat Innovat Ctr Adv Microstruct, Coll Engn & Appl Sci, Nanjing 210093, Peoples R China
[4] Nanjing Univ, Sch Phys, Nanjing 210093, Peoples R China
[5] Nanjing Univ, Key Lab Intelligent Opt Sensing & Manipulat, Minist Educ, Nanjing 210093, Peoples R China
[6] RIKEN, Cluster Pioneering Res, Theoret Quantum Phys Lab, Wako, Saitama 3510198, Japan
[7] Univ Michigan, Phys Dept, Ann Arbor, MI 48109 USA
基金
日本学术振兴会; 日本科学技术振兴机构; 中国国家自然科学基金; 国家重点研发计划;
关键词
ELECTROMAGNETICALLY INDUCED TRANSPARENCY; QUANTUM; LIGHT; GENERATION; MEMORY;
D O I
10.1126/sciadv.abe8924
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Nonreciprocal devices operating at the single-photon level are fundamental elements for quantum technologies. Because magneto-optical nonreciprocal devices are incompatible for magnetic-sensitive or on-chip quantum information processing, all-optical nonreciprocal isolation is highly desired, but its realization at the quantum level is yet to be accomplished at room temperature. Here, we propose and experimentally demonstrate two regimes, using electromagnetically induced transparency (EIT) or a Raman transition, for all-optical isolation with warm atoms. We achieve an isolation of 22.52 +/- 0.10 dB and an insertion loss of about 1.95 dB for a genuine single photon, with bandwidth up to hundreds of megahertz. The Raman regime realized in the same experimental setup enables us to achieve high isolation and low insertion loss for coherent optical fields with reversed isolation direction. These realizations of single-photon isolation and coherent light isolation at room temperature are promising for simpler reconfiguration of high-speed classical and quantum information processing.
引用
收藏
页数:8
相关论文
共 57 条
[2]   Quantum and semiclassical exceptional points of a linear system of coupled cavities with losses and gain within the Scully-Lamb laser theory [J].
Arkhipov, Ievgen I. ;
Miranowicz, Adam ;
Minganti, Fabrizio ;
Nori, Franco .
PHYSICAL REVIEW A, 2020, 101 (01)
[3]   Scully-Lamb quantum laser model for parity-time-symmetric whispering-gallery microcavities: Gain saturation effects and nonreciprocity [J].
Arkhipov, Ievgen I. ;
Miranowicz, Adam ;
Di Stefano, Omar ;
Stassi, Roberto ;
Savasta, Salvatore ;
Nori, Franco ;
Ozdemir, Sahin K. .
PHYSICAL REVIEW A, 2019, 99 (05)
[4]   Generation of paired photons with controllable waveforms [J].
Balic, V ;
Braje, DA ;
Kolchin, P ;
Yin, GY ;
Harris, SE .
PHYSICAL REVIEW LETTERS, 2005, 94 (18) :1-4
[5]   The first decades of Doppler-free two-photon spectroscopy [J].
Biraben, Francois .
COMPTES RENDUS PHYSIQUE, 2019, 20 (7-8) :671-681
[6]   OBSERVATION OF ELECTROMAGNETICALLY INDUCED TRANSPARENCY [J].
BOLLER, KJ ;
IMAMOGLU, A ;
HARRIS, SE .
PHYSICAL REVIEW LETTERS, 1991, 66 (20) :2593-2596
[7]   Electromagnetic Nonreciprocity [J].
Caloz, Christophe ;
Alu, Andrea ;
Tretyakov, Sergei ;
Sounas, Dimitrios ;
Achouri, Karim ;
Deck-Leger, Zoe-Lise .
PHYSICAL REVIEW APPLIED, 2018, 10 (04)
[8]   A single-photon transistor using nanoscale surface plasmons [J].
Chang, Darrick E. ;
Sorensen, Anders S. ;
Demler, Eugene A. ;
Lukin, Mikhail D. .
NATURE PHYSICS, 2007, 3 (11) :807-812
[9]  
Chang L, 2014, NAT PHOTONICS, V8, P524, DOI [10.1038/nphoton.2014.133, 10.1038/NPHOTON.2014.133]
[10]   Quantum state transfer and entanglement distribution among distant nodes in a quantum network [J].
Cirac, JI ;
Zoller, P ;
Kimble, HJ ;
Mabuchi, H .
PHYSICAL REVIEW LETTERS, 1997, 78 (16) :3221-3224