The imaginary point spectrum and hypercyclicity

被引:27
作者
EL Mourchid, Samir [1 ]
机构
[1] Fac Sci Semlalia, Dept Math, Marrakech, Morocco
关键词
hypercyclicity; C-0-semigroups; chaotic linear semigroups; hypercyclicity criterion;
D O I
10.1007/s00233-005-0533-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A be a generator of a C-o-semigroup T(.) on a separable Banach space. Under suitable conditions on the imaginary point spectrum of A, sigma(p)(A) boolean AND iR, we show that T(.) is hypercyclic.
引用
收藏
页码:313 / 316
页数:4
相关论文
共 9 条
[1]   A generalization of Desch-Schappacher-Webb criteria for chaos [J].
Banasiak, J ;
Moszynski, M .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2005, 12 (05) :959-972
[2]   Topological chaos for birth-and-death-type models with proliferation [J].
Banasiak, J ;
Lachowicz, M .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2002, 12 (06) :755-775
[3]  
BAYART F, 2004, ROLE UNIMODULAR POIN
[4]  
BAYART F, IN PRESS T AM MATH S
[5]   Hypercyclic and chaotic semigroups of linear operators [J].
Desch, W ;
Schappacher, W ;
Webb, GF .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1997, 17 :793-819
[6]  
EL Mourchid S, 2005, DISCRETE CONT DYN S, V13, P271
[7]   OPERATORS WITH DENSE, INVARIANT, CYCLIC VECTOR MANIFOLDS [J].
GODEFROY, G ;
SHAPIRO, JH .
JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 98 (02) :229-269
[8]   Universal families and hypercyclic operators [J].
Grosse-Erdmann, KG .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 36 (03) :345-381
[9]  
GROSSEERDMANN KG, 2003, RACSAM REV R ACAD A, V97, P273