Charge carrier transport phenomena in some organic heterojunctions

被引:0
|
作者
Rasoga, O-L. [1 ]
Socol, M. [1 ]
Stanculescu, F. [2 ]
机构
[1] Natl Inst Mat Phys, Bucharest 077125, Romania
[2] Univ Bucharest, Fac Phys, Bucharest 077125, Romania
来源
关键词
Organic semiconductor; Electrical properties; Heterostructures; ZINC PHTHALOCYANINE; ELECTRICAL-PROPERTIES; ELECTRONIC-STRUCTURE; TIN OXIDE; TETRAFLUOROTETRACYANOQUINODIMETHANE; INJECTION; ENERGY; FILMS; AU;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper presents investigations on the electrical transport phenomena in sandwich type inorganic/single (double) organic layer/inorganic such as silicon; ITO/TPyP, Alq3, alpha-NPD; ZnPc; perylene" PTCDA/silicon and inorganic (metal)/organic/metal such as silicon (A/)/ZnPc; alpha-NPD; TPyP/copper, Al, structures, prepared by vacuum evaporation. For most of these heterostructures the IN characteristics in the static regime have a near ohmic behaviour only at low voltages (<1 V) that changes in a power dependence with a coefficient n=2 or n=3 at higher voltages because of the space charge or trapped charge phenomena. For the same applied voltage, the n type Si electrode injects more charge carriers in TpyP than in Alq3. For higher voltages (>10V) an increased number of charge carriers are injected from n type Si in Alq3 compared to TpyP. The injection properties of the interface ITO, Cu, Al electrode/organic layer have also been investigated. The best injection has been obtained through ITO/ZnPc interface. For a grid configuration of the Al electrodes the transport phenomena are determined by the resistivity of the structure.
引用
收藏
页码:509 / 514
页数:6
相关论文
共 50 条
  • [1] Charge carrier transport phenomena in some organic heterojunctions
    National Institute of Materials Physics, 105 bis Atomistilor Street, Bucharest-Magurele 077125, Romania
    不详
    J. Optoelectron. Adv. Mat., 2009, 4 (509-514):
  • [2] Charge transport in accumulation layers of organic heterojunctions
    Zhu, Feng
    Wang, Haibo
    Song, De
    Lou, Kun
    Yan, Donghang
    APPLIED PHYSICS LETTERS, 2008, 93 (10)
  • [3] Charge carrier transport in organic semiconductors
    Karl, N. (n.karl@physik.uni-stuttgart.de), 1600, (Elsevier Ltd): : 133 - 134
  • [4] Charge carrier transport in organic semiconductors
    Karl, N
    SYNTHETIC METALS, 2003, 133 : 649 - 657
  • [5] Modeling of charge transport across disordered organic heterojunctions
    Cottaar, J.
    Coehoorn, R.
    Bobbert, P. A.
    ORGANIC ELECTRONICS, 2012, 13 (04) : 667 - 672
  • [6] Engineering carrier transport across organic heterojunctions by interface doping
    Tsang, S. W.
    Lu, Z. H.
    Tao, Y.
    APPLIED PHYSICS LETTERS, 2007, 90 (13)
  • [7] Charge carrier transport in silicon heterojunctions with a thin titanium oxide layer
    Bulyarskiy, Sergey V.
    Lakalin, Alexander V.
    Litvinova, Kristina I.
    Rudakov, Grigory A.
    Gusarov, Georgy G.
    Orlov, Andrey P.
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2024, 35 (21)
  • [8] Charge carrier transport in ZnO/CdS/CdTe/(Cu)/Ni heterojunctions
    Rotaru, Corneliu
    Vatavu, Sergiu
    Fedorov, Vladimir
    Kirsch, Michael
    Chetrus, Petru
    Gasin, Petru
    Lux-Steiner, Martha Ch.
    Rusu, Marin
    THIN SOLID FILMS, 2013, 535 : 241 - 243
  • [9] Investigation of the charge transport through disordered organic molecular heterojunctions
    Houili, H.
    Tutis, E.
    Batistic, I.
    Zuppiroli, L.
    JOURNAL OF APPLIED PHYSICS, 2006, 100 (03)
  • [10] Charge Carrier Transport in Disordered Organic Matrices
    S. V. Novikov
    Russian Journal of Electrochemistry, 2002, 38 : 165 - 172