Syntrophic interactions between H2-scavenging and anode-respiring bacteria can improve current density in microbial electrochemical cells

被引:68
作者
Gao, Yaohuan [1 ]
Ryu, Hodon [2 ]
Domingo, Jorge W. Santo [2 ]
Lee, Hyung-Sool [1 ]
机构
[1] Univ Waterloo, Dept Civil & Environm Engn, Waterloo, ON N2L 3G1, Canada
[2] US EPA, Natl Risk Management Res Lab, Cincinnati, OH 45268 USA
基金
加拿大自然科学与工程研究理事会;
关键词
Homoacetogens; Anaerobic digester (AD); Microbial electrochemical cells (MECs); Anode-respiring bacteria (ARB); Methanogens; ELECTRICITY-GENERATION; FUEL-CELLS; HOMOACETOGENIC BACTERIA; ACETOGENIC BACTERIA; HYDROGEN; MICROORGANISMS; OXIDATION; REACTORS; METHANE; GROWTH;
D O I
10.1016/j.biortech.2013.11.077
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
High current density of 10.0-14.6 A/m(2) and COD removal up to 96% were obtained in a microbial electrochemical cell (MEC) fed with digestate at hydraulic retention time (HRT) of 4 d and 8 d. Volatile fatty acids became undetectable in MEC effluent (HRT 8 d), except for trivial acetate (4.16 +/- 1.86 mg COD/L). Accumulated methane only accounted for 3.42% of Delta COD. Pyrosequencing analyses showed abundant fermenters (Kosmotoga spp.) and homoacetogens (Treponema spp.) in anolytes. In anode biofilm, propionate fermenters (Kosmotoga, and Syntrophobacter spp.), homoacetogens (Treponema spp.), and anode-respiring bacteria (ARB) (Geobacter spp. and Dysgonomonas spp.) were dominant. These results imply that syntrophic interactions among fermenters, homoacetogens and ARB would allow MECs to maintain high current density and coulombic efficiency. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:245 / 253
页数:9
相关论文
共 35 条
[1]  
[Anonymous], 1999, STANDARD METHODS EXA
[2]   Electricity generation in single-chamber microbial fuel cells using a carbon source sampled from anaerobic reactors utilizing grass silage [J].
Catal, Tunc ;
Cysneiros, Denise ;
O'Flaherty, Vincent ;
Leech, Donal .
BIORESOURCE TECHNOLOGY, 2011, 102 (01) :404-410
[3]   Layered corrugated electrode macrostructures boost microbial bioelectrocatalysis [J].
Chen, Shuiliang ;
He, Guanghua ;
Liu, Qin ;
Harnisch, Falk ;
Zhou, Yan ;
Chen, Yu ;
Hanif, Muddasir ;
Wang, Suqin ;
Peng, Xinwen ;
Hou, Haoqing ;
Schroeder, Uwe .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (12) :9769-9772
[4]   Separation of competitive microorganisms using anaerobic membrane bioreactors as pretreatment to microbial electrochemical cells [J].
Dhar, Bipro Ranjan ;
Gao, Yaohuan ;
Yeo, Hyeongu ;
Lee, Hyung-Sool .
BIORESOURCE TECHNOLOGY, 2013, 148 :208-214
[5]   Growth of Geobacter sulfurreducens under nutrient-limiting conditions in continuous culture [J].
Esteve-Núñez, A ;
Rothermich, M ;
Sharma, M ;
Lovley, D .
ENVIRONMENTAL MICROBIOLOGY, 2005, 7 (05) :641-648
[6]   Electron and carbon balances in microbial fuel cells reveal temporary bacterial storage behavior during electricity generation [J].
Freguia, Stefano ;
Rabaey, Korneel ;
Yuan, Zhiguo ;
Keller, Jurg .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2007, 41 (08) :2915-2921
[7]   Physiology and nutrition of Treponema primitia, an H2/CO2-acetogenic spirochete from termite hindguts [J].
Graber, JR ;
Breznak, JA .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2004, 70 (03) :1307-1314
[8]   Biological oxidation of dissolved methane in effluents from anaerobic reactors using a down-flow hanging sponge reactor [J].
Hatamoto, Masashi ;
Yamamoto, Hiroki ;
Kindaichi, Tomonori ;
Ozaki, Noriatsu ;
Ohashi, Akiyoshi .
WATER RESEARCH, 2010, 44 (05) :1409-1418
[9]   Kinetic characterization of Methanobacterium bryantii M.o.H. [J].
Karadagli, F ;
Rittmann, BE .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2005, 39 (13) :4900-4905
[10]   Dysgonomonas oryzarvi sp nov., isolated from a microbial fuel cell [J].
Kodama, Yumiko ;
Shimoyama, Takefumi ;
Watanabe, Kazuya .
INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY, 2012, 62 :3055-3059