In-line phase contrast micro-CT reconstruction for biomedical specimens

被引:10
作者
Fu, Jian [1 ]
Tan, Renbo [1 ]
机构
[1] Beijing Univ Aeronaut & Astronaut, Res Ctr Digital Radiat Imaging & Biomed Imaging, Beiijng 100191, Peoples R China
关键词
X-ray in-line phase contrast imaging; micro computed tomography; reconstruction algorithm; X-ray tube source; TOMOGRAPHY; TISSUE;
D O I
10.3233/BME-130827
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
X-ray phase contrast micro computed tomography (micro-CT) can non-destructively provide the internal structure information of soft tissues and low atomic number materials. It has become an invaluable analysis tool for biomedical specimens. Here an in-line phase contrast micro-CT reconstruction technique is reported, which consists of a projection extraction method and the conventional filter back-projection (FBP) reconstruction algorithm. The projection extraction is implemented by applying the Fourier transform to the forward projections of in-line phase contrast micro-CT. This work comprises a numerical study of the method and its experimental verification using a biomedical specimen dataset measured at an X-ray tube source micro-CT setup. The numerical and experimental results demonstrate that the presented technique can improve the imaging contrast of biomedical specimens. It will be of interest for a wide range of in-line phase contrast micro-CT applications in medicine and biology.
引用
收藏
页码:431 / 437
页数:7
相关论文
共 25 条
[1]   Three-dimensional imaging of nerve tissue by x-ray phase-contrast microtomography [J].
Beckmann, F ;
Heise, K ;
Kölsch, B ;
Bonse, U ;
Rajewsky, MF ;
Bartscher, M ;
Biermann, T .
BIOPHYSICAL JOURNAL, 1999, 76 (01) :98-102
[2]   High-resolution CT by diffraction-enhanced x-ray imaging:: mapping of breast tissue samples and comparison with their histo-pathology [J].
Bravin, Alberto ;
Keyrilainen, Jani ;
Fernandez, Manuel ;
Fiedler, Stefan ;
Nemoz, Christian ;
Karjalainen-Lindsberg, Marja-Liisa ;
Tenhunen, Mikko ;
Virkkunen, Pekka ;
Leidenius, Marjut ;
von Smitten, Karl ;
Sipila, Petri ;
Suortti, Pekka .
PHYSICS IN MEDICINE AND BIOLOGY, 2007, 52 (08) :2197-2211
[3]   Theory of quantitative phase-contrast computed tomography [J].
Bronnikov, AV .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2002, 19 (03) :472-480
[4]  
Cai W. X., 2010, P SPIE, V7622
[5]   Holotomography: Quantitative phase tomography with micrometer resolution using hard synchrotron radiation x rays [J].
Cloetens, P ;
Ludwig, W ;
Baruchel, J ;
Van Dyck, D ;
Van Landuyt, J ;
Guigay, JP ;
Schlenker, M .
APPLIED PHYSICS LETTERS, 1999, 75 (19) :2912-2914
[6]   Computed tomography of x-ray index of refraction using the diffraction enhanced imaging method [J].
Dilmanian, FA ;
Zhong, Z ;
Ren, B ;
Wu, XY ;
Chapman, LD ;
Orion, I ;
Thomlinson, WC .
PHYSICS IN MEDICINE AND BIOLOGY, 2000, 45 (04) :933-946
[7]   PRACTICAL CONE-BEAM ALGORITHM [J].
FELDKAMP, LA ;
DAVIS, LC ;
KRESS, JW .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1984, 1 (06) :612-619
[8]   Phase-sensitive x-ray imaging [J].
Fitzgerald, R .
PHYSICS TODAY, 2000, 53 (07) :23-26
[9]   A reconstruction method for equidistant fan beam differential phase contrast computed tomography [J].
Fu, J. ;
Li, P. ;
Lwang, Q. ;
Wang, S. Y. ;
Bech, M. ;
Tapfer, A. ;
Hahn, D. ;
Pfeiffer, F. .
PHYSICS IN MEDICINE AND BIOLOGY, 2011, 56 (14) :4529-4538
[10]  
Fu J., PHASE CONTRAST COMPU, DOI [10.5772/22749, DOI 10.5772/22749]