Geodesics in non-positively curved plane tessellations

被引:25
作者
Baues, O
Peyerimhoff, N
机构
[1] Univ Karlsruhe, Math Inst 2, D-76128 Karlsruhe, Germany
[2] Univ Durham, Dept Math Sci, Durham DH1 2LE, England
关键词
D O I
10.1515/ADVGEOM.2006.014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a natural combinatorial curvature function on the corners of plane tessellations and relate it to the global metric geometry of their corresponding edge and dual graphs. If the combinatorial curvature in the corners is non-positive then we prove that any geodesic path in such a graph may be extended to infinity. Moreover, if the combinatorial curvature is negative we show that every pair of geodesic segments with the same end points does not enclose any vertices. We apply these results to establish an estimate for the growth of distance balls, Gromov hyperbolicity, and four-colourability of certain classes of plane tessellations.
引用
收藏
页码:243 / 263
页数:21
相关论文
共 19 条
[1]  
ANCONA A, 1988, LECT NOTES MATH, V1344, P1
[2]  
[Anonymous], 2000, TOPICS GEOMETRIC GRO
[3]   Curvature and geometry of tessellating plane graphs [J].
Baues, O ;
Peyerimhoff, N .
DISCRETE & COMPUTATIONAL GEOMETRY, 2001, 25 (01) :141-159
[4]  
Bowers PL, 1998, MICH MATH J, V45, P31
[5]   CONFORMALLY NONSPHERICAL 2-COMPLEXES [J].
CORSON, JM .
MATHEMATISCHE ZEITSCHRIFT, 1993, 214 (03) :511-519
[7]   Boundaries and random walks on finitely generated infinite groups [J].
Karlsson, A .
ARKIV FOR MATEMATIK, 2003, 41 (02) :295-306
[8]  
KLASSERT S, IN PRESS P AM MATH S
[9]   Bounds for isoperimetric constants of infinite plane graphs [J].
Lawrencenko, S ;
Plummer, MD ;
Zha, XY .
DISCRETE APPLIED MATHEMATICS, 2001, 113 (2-3) :237-241
[10]   ON DEHNS ALGORITHM [J].
LYNDON, RC .
MATHEMATISCHE ANNALEN, 1966, 166 (03) :208-&