Perpetual American options with fractional Brownian motion

被引:35
作者
Elliott, RJ
Chan, LL
机构
[1] Univ Calgary, Haskayne Sch Business, Calgary, AB T2N 1N4, Canada
[2] Univ Calgary, Dept Math & Stat, Calgary, AB T2N 1N4, Canada
关键词
D O I
10.1088/1469-7688/4/2/001
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
In this paper, we derive a closed form solution for the value of a perpetual American option when the logreturn of a stock is driven by a fractional Brownian motion, with Hurst parameter H is an element of (0, 1). A special case of our model would be the model driven by standard Brownian motion.
引用
收藏
页码:123 / 128
页数:6
相关论文
共 24 条
[1]  
ASMUSSEN S, 2002, RUSSIAN AM PUT OPTIO
[2]   EFFICIENT ANALYTIC APPROXIMATION OF AMERICAN OPTION VALUES [J].
BARONEADESI, G ;
WHALEY, RE .
JOURNAL OF FINANCE, 1987, 42 (02) :301-320
[3]   An Ito formula for generalized functionals of a fractional Brownian motion with arbitrary Hurst parameter [J].
Bender, C .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2003, 104 (01) :81-106
[4]   PRICING OF OPTIONS AND CORPORATE LIABILITIES [J].
BLACK, F ;
SCHOLES, M .
JOURNAL OF POLITICAL ECONOMY, 1973, 81 (03) :637-654
[5]   Perpetual American options under Levy processes [J].
Boyarchenko, SI ;
Levendorskii, SZ .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2002, 40 (06) :1663-1696
[6]  
Brody D. C., 2002, Quantitative Finance, V2, P189, DOI 10.1088/1469-7688/2/3/302
[7]   Randomization and the American put [J].
Carr, P .
REVIEW OF FINANCIAL STUDIES, 1998, 11 (03) :597-626
[8]  
CARR P, 1994, FAST ACCURATE VALUAT
[9]  
CORAZZA M, 1997, J APPL MATH FINANCE
[10]  
Cutland NJ, 1995, PROG PROBAB, V36, P327