Comparing Distance Metrics for Rotation Using the k-Nearest Neighbors Algorithm for Entropy Estimation

被引:27
作者
Huggins, David J. [1 ,2 ,3 ]
机构
[1] Univ Cambridge, Condensed Matter Theory Grp, Cavendish Lab, Cambridge CB3 0HE, England
[2] Univ Cambridge, Hutchison MRC Res Ctr, Cambridge Mol Therapeut Programme, Cambridge CB2 0XZ, England
[3] Univ Cambridge, Dept Chem, Cambridge CB2 1EW, England
基金
英国工程与自然科学研究理事会; 英国惠康基金;
关键词
statistical mechanics; entropy; solvation; k-nearest neighbors; distance metric; molecular dynamics; INHOMOGENEOUS FLUID APPROACH; MOLECULAR-DYNAMICS; WATER-MOLECULES; SOLVATION THERMODYNAMICS; CONFIGURATIONAL ENTROPY; HYDRATION SHELL; MODEL; CONFORMATIONS; ENERGY;
D O I
10.1002/jcc.23504
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Distance metrics facilitate a number of methods for statistical analysis. For statistical mechanical applications, it is useful to be able to compute the distance between two different orientations of a molecule. However, a number of distance metrics for rotation have been employed, and in this study, we consider different distance metrics and their utility in entropy estimation using the k-nearest neighbors (KNN) algorithm. This approach shows a number of advantages over entropy estimation using a histogram method, and the different approaches are assessed using uniform randomly generated data, biased randomly generated data, and data from a molecular dynamics (MD) simulation of bulk water. The results identify quaternion metrics as superior to a metric based on the Euler angles. However, it is demonstrated that samples from MD simulation must be independent for effective use of the KNN algorithm and this finding impacts any application to time series data. (c) 2013 Wiley Periodicals, Inc.
引用
收藏
页码:377 / 385
页数:9
相关论文
共 40 条
[1]   A general purpose model for the condensed phases of water: TIP4P/2005 [J].
Abascal, JLF ;
Vega, C .
JOURNAL OF CHEMICAL PHYSICS, 2005, 123 (23)
[2]   Local Order, Energy, and Mobility of Water Molecules in the Hydration Shell of Small Peptides [J].
Agarwal, Manish ;
Kushwaha, Hemant R. ;
Chakravarty, Charusita .
JOURNAL OF PHYSICAL CHEMISTRY B, 2010, 114 (01) :651-659
[3]  
[Anonymous], 1987, PROBLEMY PEREDACHI I
[4]   Approximate Bayesian Computation for astronomical model analysis: a case study in galaxy demographics and morphological transformation at high redshift [J].
Cameron, E. ;
Pettitt, A. N. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2012, 425 (01) :44-65
[5]   Structural Properties of Hydration Shell Around Various Conformations of Simple Polypeptides [J].
Czapiewski, Dariusz ;
Zielkiewicz, Jan .
JOURNAL OF PHYSICAL CHEMISTRY B, 2010, 114 (13) :4536-4550
[6]   A SMOOTH PARTICLE MESH EWALD METHOD [J].
ESSMANN, U ;
PERERA, L ;
BERKOWITZ, ML ;
DARDEN, T ;
LEE, H ;
PEDERSEN, LG .
JOURNAL OF CHEMICAL PHYSICS, 1995, 103 (19) :8577-8593
[7]   CONSTANT-PRESSURE MOLECULAR-DYNAMICS SIMULATION - THE LANGEVIN PISTON METHOD [J].
FELLER, SE ;
ZHANG, YH ;
PASTOR, RW ;
BROOKS, BR .
JOURNAL OF CHEMICAL PHYSICS, 1995, 103 (11) :4613-4621
[8]   Adaptive anisotropic kernels for nonparametric estimation of absolute configurational entropies in high-dimensional configuration spaces [J].
Hensen, Ulf ;
Grubmueller, Helmut ;
Lange, Oliver F. .
PHYSICAL REVIEW E, 2009, 80 (01)
[9]   Efficient calculation of configurational entropy from molecular simulations by combining the mutual-information expansion and nearest-neighbor methods [J].
Hnizdo, Vladimir ;
Tan, Jun ;
Killian, Benjamin J. ;
Gilson, Michael K. .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2008, 29 (10) :1605-1614
[10]   Nearest-neighbor nonparametric method for estimating the configurational entropy of complex molecules [J].
Hnizdo, Vladimir ;
Darian, Eva ;
Fedorowicz, Adam ;
Demchuk, Eugene ;
Li, Shengqiao ;
Singh, Harshinder .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2007, 28 (03) :655-668