Structural characterization of the packings of granular regular polygons

被引:27
作者
Wang, Chuncheng [1 ]
Dong, Kejun [2 ]
Yu, Aibing [1 ]
机构
[1] Monash Univ, Dept Chem Engn, Lab Simulat & Modeling Particulate Syst, Clayton, Vic 3800, Australia
[2] Univ Western Sydney, Inst Infrastruct Engn, Penrith, NSW 2751, Australia
来源
PHYSICAL REVIEW E | 2015年 / 92卷 / 06期
基金
澳大利亚研究理事会;
关键词
RANDOM CLOSE PACKINGS; NONSPHERICAL PARTICLES; SIMULATION; SPHERES; ASSEMBLIES; SYSTEMS; SOLIDS; SHAPE;
D O I
10.1103/PhysRevE.92.062203
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
By using a recently developed method for discrete modeling of nonspherical particles, we simulate the random packings of granular regular polygons with three to 11 edges under gravity. The effects of shape and friction on the packing structures are investigated by various structural parameters, including packing fraction, the radial distribution function, coordination number, Voronoi tessellation, and bond-orientational order. We find that packing fraction is generally higher for geometrically nonfrustrated regular polygons, and can be increased by the increase of edge number and decrease of friction. The changes of packing fraction are linked with those of the microstructures, such as the variations of the translational and orientational orders and local configurations. In particular, the free areas of Voronoi tessellations (which are related to local packing fractions) can be described by log-normal distributions for all polygons. The quantitative analyses establish a clearer picture for the packings of regular polygons.
引用
收藏
页数:12
相关论文
共 43 条
[1]   Distribution of local void ratio in porous media systems from 3D X-ray microtomography images [J].
Al-Raoush, R ;
Alshibli, KA .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 361 (02) :441-456
[2]   Micromechanical simulation and analysis of one-dimensional vibratory sphere packing [J].
An, XZ ;
Yang, RY ;
Dong, KJ ;
Zou, RP ;
Yu, AB .
PHYSICAL REVIEW LETTERS, 2005, 95 (20)
[3]   Structural and entropic insights into the nature of the random-close-packing limit [J].
Anikeenko, A. V. ;
Medvedev, N. N. ;
Aste, T. .
PHYSICAL REVIEW E, 2008, 77 (03)
[4]   Polytetrahedral nature of the dense disordered packings of hard spheres [J].
Anikeenko, A. V. ;
Medvedev, N. N. .
PHYSICAL REVIEW LETTERS, 2007, 98 (23)
[5]   Emergence of Gamma distributions in granular materials and packing models [J].
Aste, T. ;
Di Matteo, T. .
PHYSICAL REVIEW E, 2008, 77 (02)
[6]   Mean-field theory of random close packings of axisymmetric particles [J].
Baule, Adrian ;
Mari, Romain ;
Bo, Lin ;
Portal, Louis ;
Makse, Hernan A. .
NATURE COMMUNICATIONS, 2013, 4
[7]   Steady state of tapped granular polygons [J].
Carlevaro, Carlos M. ;
Pugnaloni, Luis A. .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2011,
[8]   Random packing of regular polygons and star polygons on a flat two-dimensional surface [J].
Ciesla, Michal ;
Barbasz, Jakub .
PHYSICAL REVIEW E, 2014, 90 (02)
[9]   Improving the density of jammed disordered packings using ellipsoids [J].
Donev, A ;
Cisse, I ;
Sachs, D ;
Variano, E ;
Stillinger, FH ;
Connelly, R ;
Torquato, S ;
Chaikin, PM .
SCIENCE, 2004, 303 (5660) :990-993
[10]  
Dong K. J., 2009, EPL, V86, P6