A verified optimization technique to locate chaotic regions of Henon systems

被引:22
作者
Csendes, Tibor
Garay, Barnabas M.
Banhelyi, Balazs
机构
[1] Univ Szeged, Inst Informat, H-6701 Szeged, Hungary
[2] Tech Univ Budapest, Inst Math, H-1521 Budapest, Hungary
关键词
chaos; global optimization; Henon-map; verified optimization method;
D O I
10.1007/s10898-005-1509-9
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We present a new verified optimization method to find regions for Henon systems where the conditions of chaotic behaviour hold. The present paper provides a methodology to verify chaos for certain mappings and regions. We discuss first how to check the set theoretical conditions of a respective theorem in a reliable way by computer programs. Then we introduce optimization problems that provide a model to locate chaotic regions. We prove the correctness of the underlying checking algorithms and the optimization model. We have verified an earlier published chaotic region, and we also give new chaotic places located by the new technique.
引用
收藏
页码:145 / 160
页数:16
相关论文
共 16 条
[1]  
BANHELYI B, UNPUB OPTIMIZATION M
[2]   CONSTRUCTING LARGE FEASIBLE SUBOPTIMAL INTERVALS FOR CONSTRAINED NONLINEAR OPTIMIZATION [J].
CSENDES, T ;
ZABINSKY, ZB ;
KRISTINSDOTTIR, BP .
ANNALS OF OPERATIONS RESEARCH, 1995, 58 :279-293
[3]  
Csendes T., 1988, Acta Cybernetica, V8, P361
[4]  
CSENDES T, COMPUTER ASSISTED PR
[5]  
Dellnitz M., 2002, HDB DYNAMICAL SYSTEM, P221, DOI DOI 10.1016/S1874-575X(02)80026-1
[6]   Abundance of homoclinic and heteroclinic orbits and rigorous bounds for the topological entropy for the Henon map [J].
Galias, Z ;
Zgliczynski, P .
NONLINEARITY, 2001, 14 (05) :909-932
[7]  
Klatte R., 1993, C XSC A C CLASS LIB
[8]   Incorporating manufacturing tolerances in near-optimal design of composite structures [J].
Kristinsdottir, BP ;
Zabinsky, ZB ;
Tuttle, ME ;
Csendes, T .
ENGINEERING OPTIMIZATION, 1996, 26 (01) :1-23
[9]  
KRISTINSDOTTIR BP, 1993, INTERVAL COMPUTATION, V3, P133
[10]  
MARKOT MC, IN PRESS SIAM J OPTI