Dynamics for vortices of an evolutionary Ginzburg-Landau equations in 3 dimensions

被引:4
作者
Liu, ZH [1 ]
机构
[1] Yangzhou Univ, Normal Coll, Dept Math, Yangzhou 225002, Peoples R China
关键词
Ginzburg-Landau equations; vortex; curvature flow; asymptotic behavior;
D O I
10.1142/S0252959902000110
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper studies the asymptotic behavior of solutions to an evolutionary Ginzburg-Landau equation in 3 dimensions. It is shown that the motion of the Ginzburg-Landau vortex curves is the flow by its curvature. Away from the vortices, the author uses some measure theoretic arguments used by F. H. Lin in [16] to show the strong convergence of solutions.
引用
收藏
页码:95 / 108
页数:14
相关论文
共 27 条
[1]  
ALTSCHULER SJ, 1991, J DIFFER GEOM, V34, P491
[2]  
Ambrosio L, 1996, J DIFFER GEOM, V43, P693
[3]  
[Anonymous], 1993, COMMUN ANAL GEOM
[4]  
BAUMAN P, 1995, EUR J APPL MATH, V6, P115
[5]  
BETHUEL F, 1994, PROGR NONLINEAR DI M, V13
[6]   EXISTENCE AND PARTIAL REGULARITY RESULTS FOR THE HEAT-FLOW FOR HARMONIC MAPS [J].
CHEN, YM ;
STRUWE, M .
MATHEMATISCHE ZEITSCHRIFT, 1989, 201 (01) :83-103
[7]   DIRICHLET PROBLEMS FOR HEAT FLOWS OF HARMONIC MAPS IN HIGHER DIMENSIONS [J].
CHEN, YM .
MATHEMATISCHE ZEITSCHRIFT, 1991, 208 (04) :557-565
[8]  
DING S, 1997, CHIN ANN MATH A, V18, P437
[9]  
GAGE M, 1986, J DIFFER GEOM, V23, P69
[10]   Dynamics of Ginzburg-Landau vortices [J].
Jerrard, RL ;
Soner, HM .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1998, 142 (02) :99-125