Augmentation of Covering Arrays of Strength Two

被引:3
作者
Colbourn, Charles J. [1 ,2 ]
机构
[1] Arizona State Univ, Sch Comp Informat & Decis Syst Engn, Tempe, AZ 85287 USA
[2] Beihang Univ, State Key Lab Software Dev Environm, Beijing 100191, Peoples R China
关键词
Covering array; Augmentation; Kruskal-Katona theorem;
D O I
10.1007/s00373-014-1519-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Augmentation is an operation to increase the number of symbols in a covering array, without unnecessarily increasing the number of rows. For covering arrays of strength two, one type of augmentation forms a covering array on symbols from one on symbols together with covering arrays each on two symbols. A careful analysis of the structure of the optimal binary covering arrays underlies an augmentation operation that reduces the number of rows required. Consequently a number of covering array numbers are improved.
引用
收藏
页码:2137 / 2147
页数:11
相关论文
共 17 条
  • [11] Katona G, 1968, P C TIH 1966
  • [12] Katona GOH., 1973, PERIOD MATH HUNG, V3, P19, DOI DOI 10.1007/BF02018457
  • [13] Kleitman D. J., 1973, Discrete Mathematics, V6, P255, DOI 10.1016/0012-365X(73)90098-8
  • [14] Kruskal JB., 1963, MATH OPTIMIZATION TE, V10, P251
  • [15] Randomized post-optimization of covering arrays
    Nayeri, Peyman
    Colbourn, Charles. J.
    Konjevod, Goran
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2013, 34 (01) : 91 - 103
  • [16] Reyni A., 1971, FDN PROBAB
  • [17] EDGE DISJOINT PLACEMENT OF GRAPHS
    SAUER, N
    SPENCER, J
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 1978, 25 (03) : 295 - 302