Augmentation of Covering Arrays of Strength Two

被引:3
作者
Colbourn, Charles J. [1 ,2 ]
机构
[1] Arizona State Univ, Sch Comp Informat & Decis Syst Engn, Tempe, AZ 85287 USA
[2] Beihang Univ, State Key Lab Software Dev Environm, Beijing 100191, Peoples R China
关键词
Covering array; Augmentation; Kruskal-Katona theorem;
D O I
10.1007/s00373-014-1519-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Augmentation is an operation to increase the number of symbols in a covering array, without unnecessarily increasing the number of rows. For covering arrays of strength two, one type of augmentation forms a covering array on symbols from one on symbols together with covering arrays each on two symbols. A careful analysis of the structure of the optimal binary covering arrays underlies an augmentation operation that reduces the number of rows required. Consequently a number of covering array numbers are improved.
引用
收藏
页码:2137 / 2147
页数:11
相关论文
共 17 条
  • [1] [Anonymous], 2004, MATEMATICHE
  • [2] [Anonymous], 1974, J COMBIN THEORY SERI
  • [3] On the state of strength-three covering arrays
    Chateauneuf, M
    Kreher, DL
    [J]. JOURNAL OF COMBINATORIAL DESIGNS, 2002, 10 (04) : 217 - 238
  • [4] Covering and radius-covering arrays: Constructions and classification
    Colbourn, C. J.
    Keri, G.
    Rivas Soriano, P. P.
    Schlage-Puchta, J. -C.
    [J]. DISCRETE APPLIED MATHEMATICS, 2010, 158 (11) : 1158 - 1180
  • [5] Colbourn C.J., Covering array tables
  • [6] Strength two covering arrays: Existence tables and projection
    Colbourn, Charles J.
    [J]. DISCRETE MATHEMATICS, 2008, 308 (5-6) : 772 - 786
  • [7] Covering arrays and hash families
    Colbourn, Charles J.
    [J]. INFORMATION SECURITY, CODING THEORY AND RELATED COMBINATORICS: INFORMATION CODING AND COMBINATORICS, 2011, 29 : 99 - 135
  • [8] A NEW SHORT PROOF FOR THE KRUSKAL-KATONA THEOREM
    FRANKL, P
    [J]. DISCRETE MATHEMATICS, 1984, 48 (2-3) : 327 - 329
  • [9] Hartman A, 2005, GRAPH THEORY, COMBINATORICS AND ALGORITHMS: INTERDISCIPLINARY APPLICATIONS, P237
  • [10] Problems and algorithms for covering arrays
    Hartman, A
    Raskin, L
    [J]. DISCRETE MATHEMATICS, 2004, 284 (1-3) : 149 - 156