Perspectives on Low-Temperature Electrolysis and Potential for Renewable Hydrogen at Scale

被引:308
作者
Ayers, Katherine [1 ]
Danilovic, Nemanja [2 ]
Ouimet, Ryan [3 ]
Carmo, Marcelo [4 ]
Pivovar, Bryan [5 ]
Bornstein, Marius [6 ]
机构
[1] Proton OnSite, Wallingford, CT 06492 USA
[2] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA
[3] Univ Connecticut, Dept Chem & Biomol Engn, Storrs, CT 06269 USA
[4] Forschungszentrum Julich, D-52425 Julich, Germany
[5] Natl Renewable Energy Lab, Golden, CO 80401 USA
[6] Nel ASA, N-0278 Oslo, Norway
来源
ANNUAL REVIEW OF CHEMICAL AND BIOMOLECULAR ENGINEERING, VOL 10 | 2019年 / 10卷
关键词
hydrogen; electrolysis; catalyst; ion exchange membranes; alkaline electrolyte; acid electrolyte; OXYGEN EVOLUTION REACTION; SOLVATING POLYMER ELECTROLYTE; POROUS TRANSPORT LAYERS; TITANIUM BIPOLAR PLATES; PEM WATER ELECTROLYZER; POWER-TO-GAS; ELECTROCHEMICAL CORROSION; ALKALINE; IRIDIUM; ELECTROCATALYSTS;
D O I
10.1146/annurev-chembioeng-060718-030241
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Hydrogen is an important part of any discussion on sustainability and reduction in emissions across major energy sectors. In addition to being a feedstock and process gas for many industrial processes, hydrogen is emerging as a fuel alternative for transportation applications. Renewable sources of hydrogen are therefore required to increase in capacity. Low-temperature electrolysis of water is currently the most mature method for carbon-free hydrogen generation and is reaching relevant scales to impact the energy landscape. However, costs still need to be reduced to be economical with traditional hydrogen sources. Operating cost reductions are enabled by the recent availability of low-cost sources of renewable energy, and the potential exists for a large reduction in capital cost with material and manufacturing optimization. This article focuses on the current status and development needs by component for the low-temperature electrolysis options.
引用
收藏
页码:219 / 239
页数:21
相关论文
共 117 条
[1]   Iridium Oxide for the Oxygen Evolution Reaction: Correlation between Particle Size, Morphology, and the Surface Hydroxo Layer from Operando XAS [J].
Abbott, Daniel F. ;
Lebedev, Dmitry ;
Waltar, Kay ;
Povia, Mauro ;
Nachtegaal, Maarten ;
Fabbri, Emiliana ;
Coperet, Christophe ;
Schmidt, Thomas J. .
CHEMISTRY OF MATERIALS, 2016, 28 (18) :6591-6604
[2]   Towards a stable ion-solvating polymer electrolyte for advanced alkaline water electrolysis [J].
Aili, David ;
Wright, Andrew G. ;
Kraglund, Mikkel Rykaer ;
Jankova, Katja ;
Holdcroft, Steven ;
Jensen, Jens Oluf .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (10) :5055-5066
[3]   Iridium-Based Nanowires as Highly Active, Oxygen Evolution Reaction Electrocatalysts [J].
Alia, Shaun M. ;
Shulda, Sarah ;
Ngo, Chilan ;
Pylypenko, Svitlana ;
Pivovar, Bryan S. .
ACS CATALYSIS, 2018, 8 (03) :2111-+
[4]   Activity and Durability of Iridium Nanoparticles in the Oxygen Evolution Reaction [J].
Alia, Shaun M. ;
Rasimick, Brian ;
Ngo, Chilan ;
Neyerlin, K. C. ;
Kocha, Shyam S. ;
Pylypenko, Svitlana ;
Xu, Hui ;
Pivovar, Bryan S. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2016, 163 (11) :F3105-F3112
[5]   Hydrogen Infrastructure Challenges and Solutions [J].
Anderson, E. B. ;
Moulthrop, L. M. ;
Ayers, K. E. .
GRAND CHALLENGES IN ENERGY CONVERSION AND STORAGE, 2012, 41 (46) :75-83
[6]  
[Anonymous], 2012, Angew. Chem, DOI [DOI 10.1002/ANGE.201204842, 10.1002/ange.201204842]
[7]  
[Anonymous], HYDR PROD DISTR
[8]   Nickel-rich layered LiNi1-xMxO2(M = Mn, Fe, and Co) electrocatalysts with high oxygen evolution reaction activity [J].
Augustyn, Veronica ;
Therese, Soosairaj ;
Turner, Travis C. ;
Manthiram, Arumugam .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (32) :16604-16612
[9]  
Ayers K., 2017, HIGH PERFORMANCE PLA
[10]   Research Advances Towards Low Cost, High Efficiency PEM Electrolysis [J].
Ayers, K. E. ;
Anderson, E. B. ;
Capuano, C. B. ;
Carter, B. D. ;
Dalton, L. T. ;
Hanlon, G. ;
Manco, J. ;
Niedzwiecki, M. .
POLYMER ELECTROLYTE FUEL CELLS 10, PTS 1 AND 2, 2010, 33 (01) :3-15