Highly Dispersive Optical Solitons in Birefringent Fibers with Polynomial Law of Nonlinear Refractive Index by Laplace-Adomian Decomposition

被引:5
作者
Gonzalez-Gaxiola, Oswaldo [1 ]
Biswas, Anjan [2 ,3 ,4 ,5 ]
Yildirim, Yakup [6 ]
Moraru, Luminita [7 ,8 ]
机构
[1] Univ Autonoma Metropolitana Cuajimalpa, Appl Math & Syst Dept, Vasco Quiroga 4871, Mexico City 05348, DF, Mexico
[2] Natl Res Nucl Univ, Dept Appl Math, 31 Kashirskoe Hwy, Moscow 115409, Russia
[3] King Abdulaziz Univ, Dept Math, Math Modeling & Appl Computat MMAC Res Grp, Jeddah 21589, Saudi Arabia
[4] Dunarea de Jos Univ Galati, Cross Border Fac, Dept Appl Sci, 111 Domneasca St, Galati 800201, Romania
[5] Sefako Makgatho Hlth Sci Univ, Dept Math & Appl Math, ZA-0204 Medunsa, South Africa
[6] Near East Univ, Fac Arts & Sci, Dept Math, CY-99138 Nicosia, Cyprus
[7] Dunarea de Jos Univ Galati, Fac Sci & Environm, Dept Chem Phys & Environm, 47 Domneasca St, Galati 800008, Romania
[8] Dunarea de Jos Univ Galati, Modelling & Simulat Lab, 47 Domneasca St, Galati 800008, Romania
关键词
solitons; polynomial law; Laplace-Adomian decomposition; birefringence; GINZBURG-LANDAU EQUATION; SCHRODINGER-EQUATION; BRIGHT;
D O I
10.3390/math10091589
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is a numerical simulation of highly dispersive optical solitons in birefringent fibers with polynomial nonlinear form, which is achieved for the first time. The algorithmic approach is applied with the usage of the Laplace-Adomian decomposition scheme. Dark and bright soliton simulations are presented. The error measure has a very low count, and thus, the simulations are almost an exact replica of such solitons that analytically arise from the governing system. The suggested iterative scheme finds the solution without any discretization, linearization, or restrictive assumptions.
引用
收藏
页数:12
相关论文
共 24 条
[1]   CONVERGENCE OF ADOMIAN METHOD APPLIED TO DIFFERENTIAL-EQUATIONS [J].
ABBAOUI, K ;
CHERRUAULT, Y .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1994, 28 (05) :103-109
[2]   ON THE SOLUTION OF NONLINEAR DIFFERENTIAL-EQUATIONS WITH CONVOLUTION PRODUCT NONLINEARITIES [J].
ADOMIAN, G ;
RACH, R .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1986, 114 (01) :171-175
[3]  
Adomian G., 1994, Solving Frontier Problems of Physics: The Decomposition Method
[4]  
Adomian G., 1986, Nonlinear Stochastic Operator Equations
[5]   Dissipative optical bullets modeled by the cubic-quintic-septic complex Ginzburg-Landau equation with higher-order dispersions [J].
Djoko, Martin ;
Kofane, T. C. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 48 :179-199
[6]   Convenient analytic recurrence algorithms for the Adomian polynomials [J].
Duan, Jun-Sheng .
APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (13) :6337-6348
[7]   Highly dispersive optical solitons with a polynomial law of refractive index by Laplace-Adomian decomposition [J].
Gonzalez-Gaxiola, O. ;
Biswas, Anjan ;
Alzahrani, Abdullah K. ;
Belic, Milivoj R. .
JOURNAL OF COMPUTATIONAL ELECTRONICS, 2021, 20 (03) :1216-1223
[8]   Highly dispersive optical solitons with non-local law of refractive index by Laplace-Adomian decomposition [J].
Gonzalez-Gaxiola, O. ;
Biswas, Anjan ;
Asma, Mir ;
Alzahrani, Abdullah K. .
OPTICAL AND QUANTUM ELECTRONICS, 2021, 53 (01)
[9]  
González-Gaxiola O, 2020, REV MEX FIS, V66, P291, DOI [10.31349/revmexfis.66.291, 10.31349/RevMexFis.66.291]
[10]   Solitary wave solutions of the cubic-quintic-septic nonlinear Schrodinger equation in fiber Bragg gratings [J].
Kerbouche, M. ;
Hamaizi, Y. ;
El-Akrmi, A. ;
Triki, H. .
OPTIK, 2016, 127 (20) :9562-9570