Bimetallic transition metal chalcogenide nanowire array: An effective catalyst for overall water splitting

被引:55
作者
Majhi, Kartick Chandra [1 ]
Karfa, Paramita [1 ]
Madhuri, Rashmi [1 ]
机构
[1] Indian Sch Mines, Dept Appl Chem, Indian Inst Technol, Dhanbad 826004, Jharkhand, India
关键词
Nanowire array; Bifunctional electrocatalysts; OER; HER; Overall water splitting; OXYGEN EVOLUTION REACTION; COSE2 NANOSHEET ARRAYS; HYDROGEN EVOLUTION; BIFUNCTIONAL ELECTROCATALYST; EFFICIENT ELECTROCATALYST; SELENIDE NANOSTRUCTURES; ORGANIC FRAMEWORK; POLYHEDRA;
D O I
10.1016/j.electacta.2019.06.106
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The development of highly active, durable, and inexpensive bifunctional catalysts towards both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is one of the most challenging tasks in the term of renewable energy. Keeping in mind the current scenario, herein, we have synthesized bimetallic transition metal chalcogenides (CoTe2@CdTe and CoSe2@CdSe) by a very easy, single step hydrothermal process. During the synthesis, two different morphologies (i.e. spherical and wire) were obtained depending on the selection of chalcogen. It was found that Te based nanocomposite i.e. CoTe2@CdTe showed a symmetrical nanowire array morphology with a high electrocatalytic surface area and good electrocatalytic activity towards both HER and OER. The structural, morphological and electrochemical features of synthesized nanocomposites were characterized by various useful techniques (like field emission scanning electron microscopy, high resolution transmission electron microscopy, powder X-ray diffraction analysis etc.) to confirm their successful synthesis. The CoTe2@CdTe nanowire array has shown a small onset potential value, high current density, low Tafel slope value along with high stability towards overall water splitting. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:901 / 912
页数:12
相关论文
共 39 条
[1]   Co@Co3O4 Encapsulated in Carbon Nanotube-Grafted Nitrogen-Doped Carbon Polyhedra as an Advanced Bifunctional Oxygen Electrode [J].
Aijaz, Arshad ;
Masa, Justus ;
Roesler, Christoph ;
Xia, Wei ;
Weide, Philipp ;
Botz, Alexander J. R. ;
Fischer, Roland A. ;
Schuhmann, Wolfgang ;
Muhler, Martin .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (12) :4087-4091
[2]   Bifunctional Electrodeposited 3D NiCoSe2/Nickle Foam Electrocatalysts for Its Applications in Enhanced Oxygen Evolution Reaction and for Hydrazine Oxidation [J].
Akbar, Kamran ;
Jeon, Jae Ho ;
Kim, Minsoo ;
Jeong, Junkyeong ;
Yi, Yeonjin ;
Chun, Seung-Hyun .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2018, 6 (06) :7735-7742
[3]   NiTe2 Nanowire Outperforms Pt/C in High-Rate Hydrogen Evolution at Extreme pH Conditions [J].
Anantharaj, Sengeni ;
Karthick, Kannimuthu ;
Kundu, Subrata .
INORGANIC CHEMISTRY, 2018, 57 (06) :3082-3096
[4]   Nickel selenide nanostructures as an electrocatalyst for hydrogen evolution reaction [J].
Bhat, Karthik S. ;
Nagaraja, H. S. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (43) :19851-19863
[5]   Copper Cobalt Sulfide Nanosheets Realizing a Promising Electrocatalytic Oxygen Evolution Reaction [J].
Chauhan, Meenakshi ;
Reddy, Kasala Prabhakar ;
Gopinath, Chinnakonda S. ;
Deka, Sasanka .
ACS CATALYSIS, 2017, 7 (09) :5871-5879
[6]   Efficient and Stable Bifunctional Electrocatalysts Ni/NixMy (M = P, S) for Overall Water Splitting [J].
Chen, Gao-Feng ;
Ma, Tian Yi ;
Liu, Zhao-Qing ;
Li, Nan ;
Su, Yu-Zhi ;
Davey, Kenneth ;
Qiao, Shi-Zhang .
ADVANCED FUNCTIONAL MATERIALS, 2016, 26 (19) :3314-3323
[7]   Hierarchical CoNiSe2 nano-architecture as a high-performance electrocatalyst for water splitting [J].
Chen, Tao ;
Tan, Yiwei .
NANO RESEARCH, 2018, 11 (03) :1331-1344
[8]   Metal-Organic Framework Template Derived Porous CoSe2 Nanosheet Arrays for Energy Conversion and Storage [J].
Chen, Tian ;
Li, Songzhan ;
Wen, Jian ;
Gui, Pengbin ;
Fang, Guojia .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (41) :35927-35935
[9]   Nickel telluride as a bifunctional electrocatalyst for efficient water splitting in alkaline medium [J].
De Silva, Umanga ;
Masud, Jahangir ;
Zhang, Ning ;
Hong, Yu ;
Liyanage, Wipula P. R. ;
Zaeem, Mohsen Asle ;
Nath, Manashi .
JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (17) :7608-7622
[10]   Controlled hydrothermal synthesis of graphene supported NiCo2O4 coral-like nanostructures: An efficient electrocatalyst for overall water splitting [J].
Debata, Suryakanti ;
Patra, Santanu ;
Banerjee, Sanchari ;
Madhuri, Rashmi ;
Sharma, Prashant K. .
APPLIED SURFACE SCIENCE, 2018, 449 :203-212