Measuring the Incoherent Information in Multi-adjoint Normal Logic Programs

被引:4
作者
Eugenia Cornejo, M. [1 ]
Lobo, David [1 ]
Medina, Jesus [1 ]
机构
[1] Univ Cadiz, Dept Math, Cadiz, Spain
来源
ADVANCES IN FUZZY LOGIC AND TECHNOLOGY 2017, VOL 1 | 2018年 / 641卷
关键词
Multi-adjoint normal logic program; Coherence interpretation; Incoherence measure; SEMANTICS;
D O I
10.1007/978-3-319-66830-7_47
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Databases usually contain incoherent information due to, for instance, the presence of noise in the data. The detection of the incoherent information is an important challenge in different topics. In this paper, we will consider a formal notion for this kind of information and we will study different measures in order to detect incoherent information in a general fuzzy logic programming framework. As a consequence, we can highlight some irregular data in a multi-adjoint normal logic program and so, in other useful and more particular frameworks.
引用
收藏
页码:521 / 533
页数:13
相关论文
共 33 条
  • [1] Reasoning in Non-probabilistic Uncertainty: Logic Programming and Neural-Symbolic Computing as Examples
    Besold, Tarek R.
    Garcez, Artur d'Avila
    Stenning, Keith
    van der Torre, Leendert
    van Lambalgen, Michiel
    [J]. MINDS AND MACHINES, 2017, 27 (01) : 37 - 77
  • [2] Geodesic distance in planar graphs
    Bouttier, J
    Di Francesco, P
    Guitter, E
    [J]. NUCLEAR PHYSICS B, 2003, 663 (03) : 535 - 567
  • [3] Cornejo M. E., 2016, 8 EUR S COMP INT MAT, P24
  • [4] Cornejo M. E., 2017, LECT NOTES COMPUTER, V10305, P1
  • [5] Damasio C. V., 2001, Symbolic and Quantitative Approaches to Reasoning with Uncertainty. 6th European Conference, ECSQARU 2001. Proceedings (Lecture Notes in Artificial Intelligence Vol.2143), P748
  • [6] Hybrid Probabilistic logic programs as residuated logic programs
    Damásio, CV
    Pereira, LM
    [J]. LOGICS IN ARTIFICIAL INTELLIGENCE, 2000, 1919 : 57 - 72
  • [7] AUTOMATED REASONING USING POSSIBILISTIC LOGIC - SEMANTICS, BELIEF REVISION, AND VARIABLE CERTAINTY WEIGHTS
    DUBOIS, D
    LANG, J
    PRADE, H
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 1994, 6 (01) : 64 - 71
  • [8] Farahani R. Z., 2013, GRAPH THEORY OPERATI
  • [9] BILATTICES AND THE SEMANTICS OF LOGIC PROGRAMMING
    FITTING, M
    [J]. JOURNAL OF LOGIC PROGRAMMING, 1991, 11 (02): : 91 - 116
  • [10] Game semantics for non-monotonic intensional logic programming
    Galanaki, Chrysida
    Nomikos, Christos
    Rondogiannis, Panos
    [J]. ANNALS OF PURE AND APPLIED LOGIC, 2017, 168 (02) : 234 - 253